DNA sequences have been located at the fragile X site by in situ hybridization and by the mapping of breakpoints in two somatic cell hybrids that were constructed to break at the fragile site. These hybrids were found to have breakpoints in a common 5-kilobase Eco RI restriction fragment. When this fragment was used as a probe on the chromosomal DNA of normal and fragile X genotype individuals, alterations in the mobility of the sequences detected by the probe were found only in fragile X genotype DNA. These sequences were of an increased size in all fragile X individuals and varied within families, indicating that the region was unstable. This probe provides a means with which to analyze fragile X pedigrees and is a diagnostic reagent for the fragile X genotype.
Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cyto-genetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.
Fragile sites are chemically induced nonstaining gaps in chromosomes. Different fragile sites vary in frequency in the population and in the chemistry of their induction. DNA sequences encompassing and including the rare, autosomal, folate-sensitive fragile site, FRA16A, were isolated by positional cloning. The molecular basis of FRA16A was found to be expansion of a normally polymorphic p(CCG)n repeat. This repeat was adjacent to a CpG island that was methylated in fragile site-expressing individuals. The FRA16A locus in individuals who do not express the fragile site is not a site of DNA methylation (imprinting), which suggests that the methylation associated with fragile sites may be a consequence and not a cause of their genesis.
We have recently mapped the genetic defect underlying pseudoxanthoma elasticum (PXE), an inherited disorder characterized by progressive calcification of elastic fibers in skin, eye, and cardiovascular system, to chromosome 16p 13.1. Here we report further data on the fine-mapping and genomic structure of this locus. Haplotype analysis of informative PXE families narrowed the locus to an interval of less than 500 kb located between markers D16B9621 and D16S764. Three overlapping YAC clones were found to cover this region through YAC-STS content mapping. An overlapping BAC contig was then constructed to cover this interval and the surrounding region. About 80% of this chromosomal region has been fully sequenced using the BAC shotgun technique. Gene content and sequence analysis predicted four genes (MRP1, MRP6, PM5, and a novel transcript) and two pseudogenes (ARA and PKDI) within this interval. By screening a somatic cell hybrid panel we were able to precision-map the breakpoint of Cy185 and the starting point of a chromosomal duplication within 20 kb of BAC A962B4. The present data further refine the localization of PXE, provide additional physical cloning resources, and will aid in the eventual identification of the genetic defect causing PXE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.