The conductance of a family of biphenyl-dithiol derivatives with conformationally fixed torsion angle was measured using the scanning tunneling microscopy (STM)-break-junction method. We found that it depends on the torsion angle phi between two phenyl rings; twisting the biphenyl system from flat (phi = 0 degrees ) to perpendicular (phi = 90 degrees ) decreased the conductance by a factor of 30. Detailed calculations of transport based on density functional theory and a two level model (TLM) support the experimentally obtained cos(2) phi correlation between the junction conductance G and the torsion angle phi. The TLM describes the pair of hybridizing highest occupied molecular orbital (HOMO) states on the phenyl rings and illustrates that the pi-pi coupling dominates the transport under "off-resonance" conditions where the HOMO levels are well separated from the Femi energy.
We calculate the heat transfer between electrons to acoustic and optical phonons in monolayer and bilayer graphene (MLG and BLG) within the quasiequilibrium approximation. For acoustic phonons, we show how the temperature-power laws of the electron-phonon heat current for BLG differ from those previously derived for MLG and note that the high-temperature (neutral-regime) power laws for MLG and BLG are also different, with a weaker dependence on the electronic temperature in the latter. In the general case we evaluate the heat current numerically. We suggest that a measurement of the heat current could be used for an experimental determination of the electron-acoustic phonon coupling constants, which are not accurately known. However, in a typical experiment heat dissipation by electrons at very low temperatures is dominated by diffusion, and we estimate the crossover temperature at which acoustic-phonon coupling takes over in a sample with Joule heating. At even higher temperatures optical phonons begin to dominate. We study some examples of potentially relevant types of optical modes, including in particular the intrinsic in-plane modes, and additionally the remote surface phonons of a possible dielectric substrate.
We calculate the effect of electron-vibration coupling on conduction through atomic gold wires, which was measured in the experiments of Agraït et al. [Phys. Rev. Lett. 88, 216803 (2002)]. The vibrational modes, the coupling constants, and the inelastic transport are all calculated using a tight-binding parametrization and the non-equilibrium Green function formalism. The electronvibration coupling gives rise to small drops in the conductance at voltages corresponding to energies of some of the vibrational modes. We study systematically how the position and height of these steps vary as a linear wire is stretched and more atoms are added to it, and find a good agreement with the experiments. We also consider two different types of geometries, which are found to yield qualitatively similar results. In contrast to previous calculations, we find that typically there are several close-lying drops due to different longitudinal modes. In the experiments, only a single drop is usually visible, but its width is too large to be accounted for by temperature. Therefore, to explain the experimental results, we find it necessary to introduce a finite broadening to the vibrational modes, which makes the separate drops merge into a single, wide one. In addition, we predict how the signatures of vibrational modes in the conductance curves differ between linear and zigzag-type wires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.