Different perturbation theory treatments of the Ginzburg-Landau phase transition model are discussed. This includes a criticism of the perturbative renormalization group (RG) approach and a proposal of a novel method providing critical exponents consistent with the known exact solutions in two dimensions. The usual perturbation theory is reorganized by appropriate grouping of Feynman diagrams of ϕ 4 model with O(n) symmetry. As a result, equations for calculation of the two-point correlation function are obtained which allow to predict possible exact values of critical exponents in two and three dimensions by proving relevant scaling properties of the asymptotic solution at (and near) the criticality. The new values of critical exponents are discussed and compared to the results of numerical simulations and experiments.
A multicluster model of traffic flow is studied, in which the motion of cars is described by a stochastic master equation. Assuming that the escape rate from a cluster depends only on the cluster size, the dynamics of the model is directly mapped to the mathematically well-studied zero-range process. Knowledge of the asymptotic behavior of the transition rates for large clusters allows us to apply an established criterion for phase separation in one-dimensional driven systems. The distribution over cluster sizes in our zero-range model is given by a one-step master equation in one dimension. It provides an approximate mean-field dynamics, which, however, leads to the exact stationary state. Based on this equation, we have calculated the critical density at which phase separation takes place. We have shown that within a certain range of densities above the critical value a metastable homogeneous state exists before coarsening sets in. Within this approach we have estimated the critical cluster size and the mean nucleation time for a condensate in a large system. The metastablity in the zero-range process is reflected in a metastable branch of the fundamental flux-density diagram of traffic flow. Our work thus provides a possible analytical description of traffic jam formation as well as important insight into condensation in the zero-range process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.