Exposing human skin to ultraviolet radiation causes DNA damage, sunburn, immune alterations, and eventually, skin cancer. We wished to determine whether liposomes containing a DNA repair enzyme could prevent any of the acute effects of irradiation when applied after ultraviolet exposure. Fifteen human patients with a prior history of skin cancer were exposed to two minimal erythema doses of ultraviolet radiation on their buttock skin. Liposomes containing T4 endonuclease V or heat-inactivated enzyme were applied immediately and at 2, 4, and 5 h after ultraviolet irradiation. Transmission electron microscopy after anti-T4 endonuclease V-staining and immunogold labeling on biopsies taken at 6 h after ultraviolet exposure revealed that the enzyme was present within cells in the skin. Immunohistochemical DNA damage studies suggested a trend toward improved DNA repair at the active T4 endonuclease V liposome-treated test sites. Although the active T4 endonuclease V liposomes did not significantly affect the ultraviolet-induced erythema response and microscopic sunburn cell formation, they nearly completely prevented ultraviolet-induced upregulation of interleukin-10 and tumor necrosis factor-alpha RNA message and of interleukin-10 protein. These studies demonstrate that liposomes can be used for topical intracellular delivery of small proteins to human skin and suggest that liposomes containing DNA repair enzymes may provide a new avenue for photoprotection against some forms of ultraviolet-induced skin damage.
PurposeThe methods (IHC/FISH) typically used to assess ER, PR, HER2, and Ki67 in FFPE specimens from breast cancer patients are difficult to set up, perform, and standardize for use in low and middle-income countries. Use of an automated diagnostic platform (GeneXpert®) and assay (Xpert® Breast Cancer STRAT4) that employs RT-qPCR to quantitate ESR1, PGR, ERBB2, and MKi67 mRNAs from formalin-fixed, paraffin-embedded (FFPE) tissues facilitates analyses in less than 3 h. This study compares breast cancer biomarker analyses using an RT-qPCR-based platform with analyses using standard IHC and FISH for assessment of the same biomarkers.MethodsFFPE tissue sections from 523 patients were sent to a College of American Pathologists-certified central reference laboratory to evaluate concordance between IHC/FISH and STRAT4 using the laboratory’s standard of care methods. A subset of 155 FFPE specimens was tested for concordance with STRAT4 using different IHC antibodies and scoring methods.ResultsConcordance between STRAT4 and IHC was 97.8% for ESR1, 90.4% for PGR, 93.3% for ERBB2 (IHC/FISH for HER2), and 78.6% for MKi67. Receiver operating characteristic curve (ROC) area under the curve (AUC) values of 0.99, 0.95, 0.99, and 0.85 were generated for ESR1, PGR, ERBB2, and MKi67, respectively. Minor variabilities were observed depending on the IHC antibody comparator used.ConclusionEvaluation of breast cancer biomarker status by STRAT4 was highly concordant with central IHC/FISH in this blinded, retrospectively analyzed collection of samples. STRAT4 may provide a means to cost-effectively generate standardized diagnostic results for breast cancer patients in low- and middle-income countries.Electronic supplementary materialThe online version of this article (10.1007/s10549-018-4889-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.