The sources of photosynthate for fruit growth in cranberry (Vaccinium macrocarpon Ait.) can be spatially partitioned as new growth, old leaves and woody stems, or adjoining uprights. New growth, l-year-old leaves, or both were removed at the time of fruit set and following fruit set. Removing new growth at the time of fruit set reduced fruit set, fruit count, and yield. Removing old leaves at fruit set generally did not reduce fruit set, fruit count, or yield. Removing both often had an additional effect. Removing new leaves after fruit set did not affect fruit set or count, but did reduce fruit size. Removing old leaves after fruit set did not reduce fruit set, fruit count, or size. These data suggest that new growth is an important source of photosynthate for fruit set.
The source of photosynthate for developing cranberry (Vaccinium macrocarpon Ait.) fruit can be partitioned spatially among new growth acropetal to fruit, 1-year-old leaves basipetal to fruit, and adjacent uprights along the same runner. Cranberry uprights were labeled with 14CO2 in an open system with constant activity during flowering or fruit development. When new growth acropetal to fruit was labeled, substantial activity was found in flowers or fruit. Little activity was found in basipetal tissues. When 1-year-old basipetal leaves were labeled, most of the activity remained in the labeled leaves, with some activity in flowers or fruit. Almost no labeled C moved into acropetal tissues. When new growth of adjacent nonfruiting uprights on the same runner were labeled, almost no activity moved into the fruiting upright. These data confirm that new growth acropetal to developing flowers and fruit is the primary source of photosynthate for fruit development. Furthermore, they show that during the short time studied in our experiment, almost no C moved from one upright to another.
Cranberry (Vaccinium macrocarpon Ait.) vines were shaded with either 72% or 93% shadecloth (28% or 7% of full sun) for 1 month before flowering, after flowering, or before harvest. Fruit set was reduced by heavy shade (93%) before flowering in 1991 but not in 1992 or 1993. Heavy shade following flowering reduced fruit set in 1991 and 1992 but not 1993. The number of flowers per upright was generally not affected by shading but was reduced by prebloom shading at either level in 1993. Mean berry weight was usually conserved. Yield was reduced by shading at either level following flowering in 1991 and 1992. Shading just before harvest had no effect on the characteristics measured. Total nonstructural carbohydrate concentration was reduced to about half relative to the controls by either shading level at all treatment dates. Carbohydrate concentrations recovered to control levels by 4 to 8 weeks following removal of shading. Shading always reduced carbohydrate concentrations but did not always reduce fruit set or yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.