Context. Grain surface chemistry is fundamental to the composition of protoplanetary disks around young stars. Aims. The temperature of grains depends on their size. We evaluate the impact of this temperature dependence on the disk chemistry. Methods. We modeled a moderately massive disk with 16 different grain sizes. We used the 3D Monte Carlo POLARIS code to calculate the dust grain temperatures and the local uv flux. We modeled the chemistry using the three-phase astrochemical code NAUTILUS. Photo processes were handled using frequency-dependent cross sections and a new method to account for self and mutual shielding. The multi-grain model outputs are compared to those of single-grain size models (0.1 μm); there are two different assumptions for their equivalent temperature. Results. We find that the Langmuir-Hinshelwood mechanism at equilibrium temperature is not efficient to form H2 at 3–4 scale heights (H), and we adopt a parametric fit to a stochastic method to model H2 formation instead. We find the molecular layer composition (1–3 H) to depend on the amount of remaining H atoms. Differences in molecular surface densities between single and multi-grain models are mostly due to what occurs above 1.5 H. At 100 au, models with colder grains produce H2O and CH4 ices in the midplane, and those with warmer grains produce more CO2 ices; both of these allow for an efficient depletion of C and O as soon as CO sticks on grain surfaces. Complex organic molecules production is enhanced by the presence of warmer grains in the multi-grain models. Using a single-grain model mimicking grain growth and dust settling fails to reproduce the complexity of gas-grain chemistry. Conclusions. Chemical models with a single-grain size are sensitive to the adopted grain temperature and cannot account for all expected effects. A spatial spread of the snowlines is expected to result from the ranges in grain temperature. The amplitude of the effects depends on the dust disk mass.
Context. Optical and infrared spatially unresolved multi-epoch observations have revealed the variability of pre-main sequence stars and/or their environment. Moreover, structures in orbital motion around the central star, resulting from planet-disk interaction, are predicted to cause temporal variations in the brightness distributions of protoplanetary disks. Through repeated observations of pre-main sequence stars with the Very Large Telescope Interferometer (VLTI) over nearly two decades, the ESO Archive has become a treasure chest containing unprecedented high-resolution multi-epoch near- and mid-infrared observations of the potential planet-forming regions in protoplanetary disks. Aims. We aim to investigate whether the existing multi-epoch observations provide evidence for the variability of the brightness distributions of the innermost few astronomical units of protoplanetary disks and to quantify any variations detected. Methods. We present different approaches to search for evidence of temporal variations based on multi-epoch observations obtained with the VLTI instruments PIONIER, AMBER, and MIDI for 68 pre-main sequence stars. Results. For nine objects in our sample, multi-epoch data obtained using equal baselines are available that allow us to directly detect variations in the visibilities due to temporally variable brightness distributions. Significant variations of the near-infrared visibilities obtained in different epochs with PIONIER and/or AMBER for HD 50138, DX Cha, HD 142527, V856 Sco, HD 163296, and R CrA were found. HD 37806, TW Hya, and CPD-36 6759 show no significant variations. By estimating the impact of a small variation of the baseline on the measured squared visibilities, we are able to compare the data of another 12 pre-main sequence stars. Thereby, we find evidence for temporal variations of the brightness distribution of one additional object, AK Sco. Besides the two binaries DX Cha and AK Sco, HD 50138 and V856 Sco also show signs of variability caused by variations of asymmetric structures in the brightness distribution.
When considering particles produced in reactive plasmas, their basic properties, such as refractive index and grain size often need to be known. They can be constrained both ex-situ, e.g., by microscopy, and in-situ by polarimetry, i.e., analyzing the polarization state of scattered light. Polarimetry has the advantage of temporal resolution and real-time measurement, but the analysis is often limited by the assumption of single scattering and thus optically thin dust clouds. This limits the investigation of the growth process typically to grain sizes smaller than about 200 nm. Using 3D polarized radiative transfer simulations, however, it is possible to consider multiple scattering and to analyze the properties of dense particle clouds. We study the impact of various properties of dust clouds on the scattering polarization, namely the optical depth of the cloud, the spatial density distribution of the particles, their refractive index as well as the particle size dispersion. We find that ambiguities can occur regarding optical depth and spatial density distribution as well as regarding refractive index and particle size dispersion. Determining the refractive index correctly is especially important as it has a strong impact on the derived particle sizes. With this knowledge, we are able to design an in-situ diagnostics strategy for the investigation of the particle growth process based on radiative transfer simulations which are used to model the polarization over the whole growth process. The application of this strategy allows us for the first time to analyze the polarization measured during a growth experiment in a reactive argon-acetylene plasma for particle radii up to 280 nm.
Context. In order to study the initial conditions of planet formation, it is crucial to obtain spatially resolved multi-wavelength observations of the innermost region of protoplanetary discs. Aims. We evaluate the advantage of combining observations with MATISSE/VLTI and ALMA to constrain the radial and vertical structure of the dust in the innermost region of circumstellar discs in nearby star-forming regions. Methods. Based on a disc model with a parameterized dust density distribution, we apply 3D radiative-transfer simulations to obtain ideal intensity maps. These are used to derive the corresponding wavelength-dependent visibilities we would obtain with MATISSE as well as ALMA maps simulated with CASA. Results. Within the considered parameter space, we find that constraining the dust density structure in the innermost 5 au around the central star is challenging with MATISSE alone, whereas ALMA observations with reasonable integration times allow us to derive significant constraints on the disc surface density. However, we find that the estimation of the different disc parameters can be considerably improved by combining MATISSE and ALMA observations. For example, combining a 30-minute ALMA observation (at 310 GHz with an angular resolution of 0.03 ) for MATISSE observations in the L and M bands (with visibility accuracies of about 3 %) allows the radial density slope and the dust surface density profile to be constrained to within ∆α = 0.3 and ∆(α − β) = 0.15, respectively. For an accuracy of ∼ 1 % even the disc flaring can be constrained to within ∆β = 0.1. To constrain the scale height to within 5 au, M band accuracies of 0.8 % are required. While ALMA is sensitive to the number of large dust grains settled to the disc midplane we find that the impact of the surface density distribution of the large grains on the observed quantities is small.
Imaging Mie polarimetry is key to determining spatially resolved information about the properties, i.e., refractive index and grain size, of particle clouds, such as during the growth process in reactive particle producing plasmas. Asymmetries in the intensity maps of the different Stokes parameters resulting from the anisotropic scattering of polarized laser light complicate the analysis and require the use of radiative transfer simulations.
 We use radiative transfer simulations to investigate the asymmetric scattering behaviour based on a model of a typical reactive argon-acetylene plasma. We address possible misinterpretations and explore the potential for analysing particle properties. We find that the asymmetric pattern of the intensity distributions is highly dependent on the refractive index, providing the potential to determine the refractive index and grain size at any time during the growth process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.