Microbial biological control agents (MBCAs) are applied to crops for biological control of plant pathogens where they act via a range of modes of action. Some MBCAs interact with plants by inducing resistance or priming plants without any direct interaction with the targeted pathogen. Other MBCAs act via nutrient competition or other mechanisms modulating the growth conditions for the pathogen. Antagonists acting through hyperparasitism and antibiosis are directly interfering with the pathogen. Such interactions are highly regulated cascades of metabolic events, often combining different modes of action. Compounds involved such as signaling compounds, enzymes and other interfering metabolites are produced in situ at low concentrations during interaction. The potential of microorganisms to produce such a compound in vitro does not necessarily correlate with their in situ antagonism. Understanding the mode of action of MBCAs is essential to achieve optimum disease control. Also understanding the mode of action is important to be able to characterize possible risks for humans or the environment and risks for resistance development against the MBCA. Preferences for certain modes of action for an envisaged application of a MBCA also have impact on the screening methods used to select new microbials. Screening of MBCAs in bioassays on plants or plant tissues has the advantage that MBCAs with multiple modes of action and their combinations potentially can be detected whereas simplified assays on nutrient media strongly bias the selection toward in vitro production of antimicrobial metabolites which may not be responsible for in situ antagonism. Risks assessments for MBCAs are relevant if they contain antimicrobial metabolites at effective concentration in the product. However, in most cases antimicrobial metabolites are produced by antagonists directly on the spot where the targeted organism is harmful. Such ubiquitous metabolites involved in natural, complex, highly regulated interactions between microbial cells and/or plants are not relevant for risk assessments. Currently, risks of microbial metabolites involved in antagonistic modes of action are often assessed similar to assessments of single molecule fungicides. The nature of the mode of action of antagonists requires a rethinking of data requirements for the registration of MBCAs.
In augmentative biological control (ABC), invertebrate and microbial organisms are seasonally released in large numbers to reduce pests. Today it is applied on more than 30 million ha worldwide. Europe is the largest commercial market for invertebrate biological control agents, while North America has the largest sales of microbials. A strong growth in use of ABC, particularly of microbial agents, is taking place in Latin America, followed by Asia. The current popularity of ABC is due to (1) its inherent positive characteristics (healthier for farm workers and persons living in farming communities, no harvesting interval or waiting period after release of agents, sustainable as there is no development of resistance against arthropod natural enemies, no phytotoxic damage to plants, better yields and a healthier product, reduced pesticide residues [well below the legal Maximum Residue Levels (MRLs)], (2) professionalism of the biological control industry (inexpensive large scale mass production, proper quality control, efficient packaging, distribution and release methods, and availability of many ([440 species) control agents for numerous pests), (3) a number of recent successes showing how biological control can save agricultural production when pesticides fail or are not available, (4) several Handling Editor: Russell Messing.Electronic supplementary material The online version of this article
Since the initial use of Bordeaux mixture in 1885 for plant disease control, a large number of copper-based antimicrobial compounds (CBACs) have been developed and applied for crop protection. While these compounds have revolutionized crop protection in the twentieth century, their continuous and frequent use has also raised concerns about the long-term sustainability of copper (Cu)-based crop protection system. Here, we review CBACs used in crop protection and highlight their benefits and risks, and potential for their improvement and opportunities for further research to develop alternatives to CBACs. The major findings are (i) the relatively high toxicity to plant pathogens, low cost, low mammalian toxicity of the fixed Cu compounds, and their chemical stability and prolonged residual effects are major benefits of these compounds; (ii) phytotoxicity, development of copper-resistant strains, soil accumulation, and negative effects on soil biota as well as on food quality parameters are key disadvantages of CBACs; (iii) regulatory pressure in agriculture worldwide to limit the use of CBACs has led to several restrictions, including that imposed by the regulation 473/2002 in the European Union; and (iv) mitigation strategies to limit the negative effects of CBACs include their optimized use, soil remediation, and development and application of alternatives to CBACs for a sustainable crop protection. We conclude that recent research and policy efforts have led to the development of a number of alternatives to CBACs, which should be further intensified to ensure that growers have sufficient tools for the implementation of sustainable crop protection strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.