Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific.
A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture.
SummaryCommensal bacteria have been shown to modulate the host mucosal immune system. Here, we report that oral treatment of BALB/c mice with components from the commensal, Parabacteroides distasonis, significantly reduces the severity of intestinal inflammation in murine models of acute and chronic colitis induced by dextran sulphate sodium (DSS). The membranous fraction of P. distasonis (mPd) prevented DSS-induced increases in several proinflammatory cytokines, increased mPd-specific serum antibodies and stabilized the intestinal microbial ecology. The anti-colitic effect of oral mPd was not observed in severe combined immunodeficient mice and probably involved induction of specific antibody responses and stabilization of the intestinal microbiota. Our results suggest that specific bacterial components derived from the commensal bacterium, P. distasonis, may be useful in the development of new therapeutic strategies for chronic inflammatory disorders such as inflammatory bowel disease.
The Butyrivibrio group comprises Butyrivibrio fibrisolvens and related Gram-positive bacteria isolated mainly from the rumen of cattle and sheep. The aim of this study was to investigate phenotypic characteristics that discriminate between different phylotypes. The phylogenetic position, derived from 16S rDNA sequence data, of 45 isolates from different species and different countries was compared with their fermentation products, mechanism of butyrate formation, lipid metabolism and sensitivity to growth inhibition by linoleic acid (LA). Three clear sub-groups were evident, both phylogenetically and metabolically. Group VA1 typified most Butyrivibrio and Pseudobutyrivibrio isolates, while Groups VA2 and SA comprised Butyrivibrio hungatei and Clostridium proteoclasticum, respectively. All produced butyrate but strains of group VA1 had a butyrate kinase activity <40 U (mg protein)(-1), while strains in groups VA2 and SA all exhibited activities >600 U (mg protein)(-1). The butyrate kinase gene was present in all VA2 and SA bacteria tested but not in strains of group VA1, all of which were positive for the butyryl-CoA CoA-transferase gene. None of the bacteria tested possessed both genes. Lipase activity, measured by tributyrin hydrolysis, was high in group VA2 and SA strains and low in Group VA1 strains. Only the SA group formed stearic acid from LA. Linoleate isomerase activity, on the other hand, did not correspond with phylogenetic position. Group VA1 bacteria all grew in the presence of 200 microg LA ml(-1), while members of Groups VA2 and SA were inhibited by lower concentrations, some as low as 5 microg ml(-1). This information provides strong links between phenotypic and phylogenetic properties of this group of clostridial cluster XIVa Gram-positive bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.