This paper summarizes the status of the COMPASS tokamak, its comprehensive diagnostic equipment and plasma scenarios as a baseline for the future studies. The former COMPASS-D tokamak was in operation at UKAEA Culham, UK in 1992-2002. Later, the device was transferred to the Institute of Plasma Physics of the Academy of Sciences of the Czech Republic (IPP AS CR), where it was installed during 2006-2011. Since 2012 the device has been in a full operation with Type-I and Type-III ELMy H-modes as a base scenario. This enables together with the ITER-like plasma shape and flexible NBI heating system (two injectors enabling co-or balanced injection) to perform ITER relevant studies in different parameter range to the other tokamaks (ASDEX-Upgrade, DIII-D, JET) and to contribute to the ITER scallings. In addition to the description of the device, current status and the main diagnostic equipment, the paper focuses on the characterization of the Ohmic as well as NBIassisted H-modes. Moreover, Edge Localized Modes (ELMs) are categorized based on their frequency dependence on power density flowing across separatrix. The filamentary structure of ELMs is studied and the parallel heat flux in individual filaments is measured by probes on the outer mid-plane and in the divertor. The measurements are supported by observation of ELM and inter-ELM filaments by an ultra-fast camera.
Partial detachment is the desired regime for the baseline burning plasma scenario in ITER and next-step devices, as it allows to convert the majority of the energy carried by charged particles through the scrape-off-layer (SOL) is dissipated and thus deposition of localized heat fluxes in the divertor region is avoided. The COMPASS tokamak is equipped with an open divertor and has a relatively short connection length, both factors being unfavourable for access to detachment. As such, it only allows to approach naturally detached operation at very high line-averaged densities (> 10 20 m −3), which are incompatible e.g. with maintaining the ELMy H-mode regime. In order to achieve the detachment at lower densities, impurities (such as nitrogen) should be injected into the plasma in the divertor region. A series of experiments with impurity injection in the range of 1-9×1020 molecules per second at different locations in the divertor were performed with the aim to cool the plasma and influence the particle and heat transport onto the divertor targets and provoke partial detachment. Previously reported results [M. Komm et al, EPS 2017, P1.118] were largely extended by injection of nitrogen at the outer divertor target.
Axisymmetric geodesic acoustic mode (GAM) oscillations of the magnetic field, plasma potential and electron temperature have been identified on the COMPASS tokamak. This work brings an overview of their electromagnetic properties studied by multi-pin reciprocating probes and magnetic diagnostics. The n = 0 fluctuations form a continuous spectrum in limited plasmas but change to a single dominant peak in diverted configuration. At the edge of diverted plasmas the mode exhibits a non-local structure with a constant frequency over a radial extent of at least several centimeters. Nevertheless, the frequency still reacts on temporal changes of plasma temperature caused by an auxiliary NBI heating as well as those induced by periodic sawtooth crashes. Radial wavelength of the mode is found to be about 1-4 cm, with values larger for the plasma potential than for the electron temperature. The mode propagates radially outward and its radial structure induces oscillations of a poloidal E × B velocity, that can locally reach the level of the mean poloidal flow. Bicoherence analysis confirms a non-linear interaction of GAM with a broadband ambient turbulence. The mode exhibits strong axisymmetric magnetic oscillations that are studied both in the poloidal and radial components of the magnetic field. Their poloidal standing-wave structure was confirmed and described for the first time in diverted plasmas. In limited plasmas their amplitude scales with safety factor. Strong suppression of the magnetic GAM component, and possibly of GAM itself, is observed during co-current but not counter-current NBI.
Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.