The MOnolithic Stitched Sensor (MOSS) is a development prototype chip towards the ITS3 vertexing detector for the ALICE experiment at the LHC. Designed using a 65 nm CMOS Imaging technology, it aims at profiting from the stitching technique to construct a single-die monolithic pixel detector of 1.4 cm × 26 cm. The MOSS prototype is one of the prototypes developed within the CERN-EP R&D framework to learn how to make stitched wafer-scale sensors with satisfactory yield. This contribution will describe some of the design challenges of a stitched pixel sensor and the techniques adopted during the development of this prototype.
The Digital Pixel Test Structure (DPTS) is a monolithic active pixel sensor prototype chip designed to explore the TPSCo 65 nm ISC process in the framework of the CERN-EP R&D on monolithic sensors and the ALICE ITS3 upgrade. It features a 32 × 32 binary pixel matrix at 15 μm pitch with event-driven readout, with GHz range time-encoded digital signals including Time-Over-Threshold. The chip proved fully functional and efficient in testbeam allowing early verification of the complete sensor to readout chain. This paper focuses on the design, in particular the digital readout and its perspectives with some supporting results.
A series of monolithic active pixel sensor prototypes (APTS chips) were manufactured in the TPSCo 65 nm CMOS imaging process in the framework of the CERN-EP R&D on monolithic sensors and the ALICE ITS3 upgrade project. Each APTS chip contains a 4 × 4 pixel matrix with fast analog outputs buffered to individual pads. To explore the process and sensor characteristics, various pixel pitches (10 µm–25 µm), geometries and reverse biasing schemes were included. Prototypes are fully functional with detailed sensor characterization ongoing. The design will be presented with some experimental results also correlating to some transistor measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.