The production of π±, K±, and $$ \left(\overline{\textrm{p}}\right)\textrm{p} $$
p
¯
p
is measured in pp collisions at $$ \sqrt{s} $$
s
= 13 TeV in different topological regions of the events. Particle transverse momentum (pT) spectra are measured in the “toward”, “transverse”, and “away” angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, RT = NT/〈NT〉, is used to group events according to their UE activity, where NT is the measured charged-particle multiplicity per event in the transverse region and 〈NT〉 is the mean value over all the analysed events. The first measurements of identified particle pT spectra as a function of RT in the three topological regions are reported. It is found that the yield of high transverse momentum particles relative to the RT-integrated measurement decreases with increasing RT in both the toward and the away regions, indicating that the softer UE dominates particle production as RT increases and validating that RT can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing RT. This hardening follows a mass ordering, being more significant for heavier particles. Finally, it is observed that the pT-differential particle ratios $$ \left(\textrm{p}+\overline{\textrm{p}}\right)/\left({\uppi}^{+}+{\uppi}^{-}\right) $$
p
+
p
¯
/
π
+
+
π
−
and (K+ + K−)/(π+ + π−) in the low UE limit (RT → 0) approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce e+e− results.
This paper presents the design of a front-end circuit for monolithic active pixel sensors. The circuit operates with a sensor featuring a small, low-capacitance (< 2 fF) collection electrode and is integrated in the DPTS chip, a proof-of-principle prototype of 1.5 mm × 1.5 mm including a matrix of 32 × 32 pixels with a pitch of 15 µm. The chip is implemented in the 65 nm imaging technology from the Tower Partners Semiconductor Co. foundry and was developed in the framework of the EP-R&D program at CERN to explore this technology for particle detection. The front-end circuit has an area of 42 µm 2 and can operate with a power consumption as low as 12 nW. Measurements on the prototype relevant to the front-end will be shown to support its design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.