Wrinkles are a major topic in dermocosmetology; the purpose of this work has been to go deeper into the knowledge of cutaneous damage underlying these modifications of skin surface. Up to now, the number of published works about the histological structure of wrinkles is not very large. Therefore to complete the findings, we studied 46 subjects of both sexes, between 57 and 98-year-old, enabling us to obtain 157 skin biopsies of wrinkles (face) and sun-protected areas (abdomen). We used different histological techniques involving histochemistry, immunohistochemistry, electron microscopy and quantification by image analysis in addition to classic standard techniques. This study has allowed us to confirm published structural modifications of wrinkles, but also to display many other original alterations. The increased thinning of the epidermis atrophied with age is confirmed by the study of desmoplakins outlining the cellular contours of keratinocytes. Such a thinning is accompanied by a decrease in several markers of epidermal differentiation at the bottom of the wrinkles: filaggrin, keratohyalin granules and transglutaminase I, disturbing desquamation and the capacity of the horny layer to retain water. The dermoepidermal junction is modified by a decrease of collagen IV and VII, which, combined with fewer and fewer oxytalan fibres under wrinkles, weakens this interface. The deposition of abnormal elastotic tissue in the dermis, with an interruption of these deposits under wrinkles and an atrophy of dermal collagen more pronounced under wrinkles, boosts the magnitude and depth of wrinkles. The composition of the other dermal constituents is also altered with, more particularly, a marked decrease of chondroitin sulphates in the papillary dermis under wrinkles, combined with an asymmetrical variation of glycosaminoglycans on both edges of wrinkles. The atrophy of the hypodermis, also more marked under wrinkles, with a thickening of fibrous lines, also makes the depth of wrinkles more pronounced. Wrinkle formation appears at the same time as numerous modifications in different cutaneous structures, which may be mutually amplified. Such a study by pointing out altered elements in skin physiology, makes the development of specific treatments possible in order to mitigate this unwelcome cutaneous deterioration.
The epidermis, the outermost structure of the skin, fulfils important roles as a physical barrier between the organism and its environment and as a neuroendocrine, immune and sensory organ. It is innervated by unmyelinated sensory fibres conveying nociceptive and thermoceptive information. Little is known concerning the functional interactions between these sensory fibres and the keratinocytes, which constitute 95% of the epidermal cells. We have developed a coculture model of primary rat sensory neurons and keratinocytes, as well as of equivalent cell-lines: ND7-23 neurons and A431 keratinocytes. We show that primary dorsal root ganglion neurons survive well in a standard keratinocyte reference medium containing a low concentration of calcium, but fail to extend axons. However, when neurons are cocultured with keratinocytes, axonal outgrowth is strongly stimulated. The use of a Transwell culture system indicated that the stimulation of axonal growth depends on a soluble factor secreted by keratinocytes. Axon outgrowth was also induced by nerve growth factor or brain-derived neurotrophic factor, but not by neurotrophin 3 or glial cell-derived neurotrophic factor. Neurons cocultured with keratinocytes did not change their responses to ATP, capsaicin or high potassium solution, as measured by calcium imaging. The trophic effect of keratinocytes concerned essentially a population of medium-sized (17-25 microm) neurons, some of which expressed substance P-like immunoreactivity and responded to capsaicin. Our preparation, in which cells are maintained at low external calcium concentration, could represent a useful in vitro model for characterizing the effect of skin-derived guidance and trophic factors.
Skin aging is characterised by a progressive deterioration of its functional properties, linked to alterations of dermal connective tissue. Whereas many studies have been devoted to collagen alterations during aging, the situation is less clear concerning glycosaminoglycans and proteoglycans. Particularly, the alterations of the expression of small leucine-rich proteoglycans (SLRPs), a family of proteoglycans strongly implicated in cell regulation, have never been studied. In the present study we measured glycosaminoglycans and small leucine-rich proteoglycans synthesis by skin fibroblasts from donors of 1 month to 83 years old. [3H]-glucosamine and [35S]-sulfate incorporation did not show significant differences of sulfated GAG synthesis during aging. On the other hand, a significant positive correlation was found between hyaluronan secretion and donor's age. Northern blot analysis of SLRPs mRNAs showed a significant negative correlation of lumican mRNA with donor's age, whereas decorin and biglycan mRNAs were not significantly altered. Immunohistochemical study and quantitative image analysis confirmed a decreased lumican accumulation in aged human skin. Taken together, our results suggest that impairment of glycosaminoglycans and SLRPs synthesis might be involved in the functional alterations of aged skin.
Le volume de 1'epiphyse chez 5 Ordres de Mammiferes (28 Insectivores, 20 Prosimiens 25 Rongeurs et un Lagomorphe, 41 Chiropteres et 22 Simiens dont THomme) a 6t6 mesuro par planimotrie et par pesoe de photographies de nombreuses coupes oquidistantes.Les coefficients de correlation liant le volume de 1'epiphyse au poids somatique et au poids encephalique sont assez faibles (0,6503 ä 0,8601 pour la relation e"piphyse/poids somatique ; 0,6702 a 0,8076 pour la relation opiphyse/poids encophalique) par suite des grandes variations intra-et interspocifiques qu'on observe dans les volumes e"piphysaires.Le coefficient d'allometrie par rapport au poids somatique est voisin de 1 dans le groupe Insectivores-Lomuriens-Simiens (1,009). Comme il est admis que, chez les Mammiferes, Tepiphyse a des fonctions endocrines, il est logique de considorer sa croissance interspocifique comme au volume de sang circulant et done au poids somatique. Le coefficient d'allomotrie par rapport au poids encophalique est ogalement voisin de l'unito (1,025) dans le groupe Insectivores-Prosimiens-Simiens, ce qui peut s'expliquer par le fait que la relation pondorale encophalo-somatique est tres voisine de Tisomotrie dans ce groupe de Mammiferes.Les indices £piphysaires presentent de tres grandes variations dans chacun des ordres de Mammiferes etudios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.