A demonstration power plant (DEMO) will be the next step for fusion energy following ITER. Some of the key design questions can be addressed by simulations using system codes. System codes aim to model the whole plant with all its subsystems and identify the impact of their interactions on the design choices. The SYCOMORE code is a modular system code developed to address key questions relevant to tokamak fusion reactor design. SYCOMORE is being developed within the European Integrated Tokamak Modelling framework and provides a global view (technology and physics) of the plant. It includes modules to address plasma physics, divertor physics, breeding blankets, shield design, magnet design and the power balance of plant. The code is coupled to an optimization framework which allows one to specify figures of merit and constraints to obtain optimized designs. Examples of pulsed and steady-state DEMO designs obtained using SYCOMORE are presented. Sensitivity to design assumptions is also studied, showing that the operational domain around working points can be narrow for some cases.
The electromagnetic-thermal models for Cable-in-Conduit Conductors JackPot-ACDC and THEA (Thermal, Hydraulic and Electric Analysis of superconducting cables) are combined predicting the stability of ITER Central Solenoid conductors. The combination of both models allows the prediction of the effect of any type of magnetic field perturbation in time, relevant for the magnet coils during the plasma operation scenario of the reactor. At present, there is no experiment for testing the stability of the ITER Nb3Sn conductors under such conditions. Only limited experimental data on Minimum Quench Energy (MQE), defining the conductor stability, are available but the time and magnetic field amplitude settings are completely different from the actual ITER operating conditions. Nevertheless, such tests are useful as a basis to calibrate and benchmark the codes. The JackPot-THEA combination allows to determine the MQE for any magnetic field change in time and to fully describe the involved electromagnetic phenomena in strand-level detail in terms of local power dissipation and (peak) electric field along all strands. Thermally, the computation is still on a global scale for identifying the quench initiation and propagation. The predictions from the combined codes are in good agreement with the experimental results and provide a solid basis for extrapolative scaling of CICC's stability under plasma operating conditions.Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.