High spectral purity at longer wavelength side is demanded in many extreme ultraviolet (EUV) and soft X-ray (together also referred to as XUV) optical systems. It is usually obtained at the expense of a high loss of XUV efficiency. We proposed and developed a new method based on a periodic, tapered structure integrated with an EUV multilayer. The longer wavelength radiation is scattered/diffracted away by the tapered multilayer structure while the EUV light is reflected. The first proof-of-principle showed a broadband suppression from λ = 100-400 nm with an average factor of 14. Moreover, a high EUV reflectance of 64.7% was achieved, which corresponds to 94% of the efficiency of a regular EUV multilayer mirror.
We present the first experimental demonstration of a novel type of narrowband and wavelength-tunable multilayer transmission filter for the extreme ultraviolet (EUV) region. The operating principle of the filter is based on spatially overlapping the nodes of a standing wave field with the absorbing layers within the multilayer structure. For a wavelength with a matching node pattern, this increases the transmission as compared to neighboring wavelengths where anti-nodes overlap with the absorbing layers. Using Ni/Si multilayers where Ni provides strong absorption, we demonstrate the proper working of such anomalous transmission filter. The demonstration is carried out at the example of 13.5 nm wavelength and at normal incidence, providing a 0.27 nm-wide transmission peak. We also demonstrate wavelength tunability by operating the same Ni/Si filter at different wavelengths by varying the angle of incidence. As the multilayer filter is directly deposited on the active area of an EUV-sensitive photodiode, this provides an extremely compact device for easy spectral monitoring in the EUV. The transmission spectrum of the filter is modeled and found to be in good agreement with the experimental data. The agreement proves that such filters and compact monitoring devices can be straightforwardly designed and fabricated, as desired, also for other EUV wavelengths, bandwidths and angles of incidence, thereby showing a high potential for applications. (23), 3207-3212 (2004). 10. W. Schwanda, K. Eidmann, and M. C. Richardson, "Characterization of a flat-field grazing-incidence XUV spectrometer," J. X-Ray Sci. Technol. 4(1), 8-17 (1993). 11. N. Nakano, H. Kuroda, T. Kita, and T. Harada, "Development of a flat-field grazing-incidence XUV spectrometer and its application in picosecond XUV spectroscopy," Appl. Opt. 23 (14), 2386-2392 (1984 of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range," Opt. Express 23(4), 4421-4434 (2015).
An rf-modulated pulse train from a passively Q-switched Nd:YAG laser has been generated using an extra-cavity acousto-optic modulator. The rf modulation reproduces the spectral quality of the local oscillator. It leads to a high pulse-to-pulse phase coherence, i.e., phase memory, over thousands of pulses. The potentialities of this transmitter for lidar-radar are demonstrated by performing Doppler velocimetry on indoor moving targets. The experimental results are in good agreement with a model based on elementary signal processing theory. In particular, we show experimentally and theoretically that lidar-radar is a promising technique that allows discrimination between translation and rotation movements. Being independent of the laser internal dynamics, this scheme can be applied to any Q-switched laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.