SOFIA (Study On FIssion with Aladin) is an innovative experimental programme on nuclear fission carried out at GSI. In August 2012, we used relativistic secondary beams of neutron-deficient actinides and pre-actinides provided by the FRS and studied their fission, induced by electromagnetic interaction, in inverse kinematics. This experiment will provide for the first time complete isotopic yields (nuclear charge and mass) for both fragments over a broad range of fissioning nuclei from 238 Np down to 183 Hg. In this article, we discuss the experimental set-up and present promising preliminary results.
SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238 U.
Total fission cross sections of 208 Pb induced by protons have been determined at 370A, 500A, and 650A MeV. The experiment was performed at GSI Darmstadt where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to determine these cross sections with an uncertainty below 6%. This result was achieved by an accurate beam selection and registration of both fission fragments in coincidence which were also clearly distinguished from other reaction channels. These data solve existing discrepancies between previous measurements, providing new values for the Prokofiev systematics. The data also allow us to investigate the fission process at high excitation energies and small deformations. In particular, some fundamental questions about fission dynamics have been addressed, which are related to dissipative and transient time effects.
The intranuclear cascade model INCL (Liège Intranuclear Cascade) is now able to simulate spallation reactions induced by projectiles with energies up to roughly 15 GeV. This was made possible thanks to the implementation of multipion emission in the NN, ΔN and πN interactions. The results obtained with reactions on nuclei induced by nucleons or pions gave confidence in the model. A next step will be the addition of the strange particles, Λ, Σ and kaons, in order to not only refine the high-energy modeling, but also to extend the capabilities of INCL, as studying hypernucleus physics. Between those two versions of the code, the possibility to treat the η and ω mesons in INCL has been performed and this is the topic of this paper. Production yields of these mesons increase with energy and it is interesting to test their roles at higher energies. More specifically, studies of η rare decays benefit from accurate simulations of its production. These are the two reasons for their implementation. Ingredients of the model, like elementary reaction cross sections, are discussed and comparisons with experimental data are carried out to test the reliability of those particle productions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.