Graphene is hailed as an ideal material for spintronics due to weak intrinsic spin-orbit interaction that facilitates lateral spin transport and tunability of its electronic properties [1-3], including a possibility to induce magnetism in graphene [4-9]. Another promising application of graphene is related to its use as a spacer separating ferromagnetic metals (FMs) in vertical magnetoresistive devices [10-20], the most prominent class of spintronic devices widely used as magnetic sensors. In particular, few-layer graphene was predicted [10-12] to act as a perfect spin filter. Here we show that the role of graphene in such devices (at least in the absence of epitaxial alignment between graphene and the FMs) is different and determined by proximity-induced spin splitting and charge transfer with adjacent ferromagnetic metals, making graphene a weak FM electrode rather than a spin filter. To this end, we report observations of magnetoresistance (MR) in vertical Co-graphene-NiFe junctions with 1 to 4 graphene layers separating the ferromagnets, and demonstrate that the dependence of the MR sign on the number of layers and its inversion at relatively small bias voltages is consistent with spin transport between weakly doped and differently spin-polarized layers of graphene. The proposed interpretation is supported by the observation of an MR sign reversal in biased Co-graphene-hBN-NiFe devices and by comprehensive structural characterization. Our results suggest a new architecture for vertical devices with electrically controlled MR. Following the successful development of graphene-based lateral spintronic structures [1-8], the implementation of graphene as a spacer in vertical magnetic tunnel junctions (MTJ) has become a subject of intense interest [13-20]. Up to now, theoretical proposals [10-12] for graphene's role in MTJs focused on the so-called 'K-point spin filtering' expected in ideally lattice-matched single-crystalline ferromagnet-graphene-ferromagnet (FM-G-FM) structures and attributed to matching spin-polarized bands in the ferromagnet and the electronic states in the graphene treated as a tunnelling barrier. This mechanism was also used to interpret the MR sign inversion observed in conventional Ni-Al 2 O 3 -Co [13] and Ni-MgO-Co [14] tunnel junctions where the Ni electrode was passivated by CVD grown (epitaxial) mono-[13] or few-layer [14] graphene. However, despite several attempts,
Raman spectroscopy is an ideal tool for the characterization of strained graphene. Biaxial strain, in particular, allows for more reliable calculation of the Grüneisen parameters than uniaxial strain. However, the application of biaxial strain is rather difficult to achieve experimentally, so all previous studies reported on graphene subjected to relatively small biaxial strains (0.1%–1%), in contrast to uniaxial strain above 10%. Here, we report a simple fabrication technique to produce pressurized and stable graphene membranes that can support differential pressures up to 14 bar, corresponding to a reversible strain up to ∼2%. We find that the Grüneisen parameters remain constant even for the largest strains achieved, in agreement with the theoretical predictions. However, for strains above 1%, a distinctive broadening of both the G and 2D peaks was observed for biaxial strain. We attribute this to the nanoscale variations of strain in the membrane within an area comparable with the laser spot size.
hBN; magnetic tunnel junction; resonant tunneling; spin valve; tunneling magnetoresistance; van der Waals devices Hexagonal boron nitride (hBN) is a prototypical high-quality two-dimensional insulator and an ideal material to study tunneling phenomena, as it can be easily integrated in vertical van der Waals devices. For spintronic devices, its potential has been demonstrated both for efficient spin injection in lateral spin valves and as a barrier in magnetic tunnel junctions (MTJs). Here we reveal the effect of point defects inevitably present in mechanically exfoliated hBN on the tunnel
Spintronics involves the development of low-dimensional electronic systems with potential use in quantum-based computation. In graphene, there has been significant progress in improving spin transport characteristics by encapsulation and reducing impurities, but the influence of standard two-dimensional (2D) tunnel contacts, via pinholes and doping of the graphene channel, remains difficult to eliminate. Here, we report the observation of spin injection and tunable spin signal in fully encapsulated graphene, enabled by van der Waals heterostructures with one-dimensional (1D) contacts. This architecture prevents significant doping from the contacts, enabling high-quality graphene channels, currently with mobilities up to 130 000 cm 2 V –1 s –1 and spin diffusion lengths approaching 20 μm. The nanoscale-wide 1D contacts allow spin injection both at room and at low temperature, with the latter exhibiting efficiency comparable with 2D tunnel contacts. At low temperature, the spin signals can be enhanced by as much as an order of magnitude by electrostatic gating, adding new functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.