2The class of 2D atomic crystals 1 , which started with graphene 2 now includes a large variety of materials. However, the real diversity can be achieved if one starts to combine several such crystals in van der Waals heterostructures 3,8 . Most attractive and powerful is the idea of band-structure engineering, where by combining several different 2D crystals one can create a designer potential landscape for electrons to live in. Rendering the band-structure with atomic precision allows tunnel barriers, QWs and other devices, based on the broad choice of 2D materials.Such band-structure engineering has previously been exploited to create LEDs and lasers based on semiconductor heterostructures grown by molecular beam epitaxy 9 . Here we demonstrate that using graphene as a transparent conductive layer, hBN as tunnel barriers and different transition metal dichalcogenides (TMDC) 1,10 as the materials for QWs, we can create efficient LEDs; Fig. 1F. In our devices, electrons and holes are injected to a layer of TMDC from the two graphene electrodes.Because of the long lifetime of the quasiparticles in the QWs (determined by the height and thickness of the neighbouring hBN barriers), electrons and holes recombine, emitting a photon. The emission wavelength can be fine-tuned by the appropriate selection of TMDC and quantum efficiency (QE) can be enhanced by using multiple QWs (MQWs).We chose TMDC because of wide choice of such materials and the fact that monolayers of many TMDC are direct band gap semiconductors [11][12][13][14][15] . Until now, electroluminescence (EL) in TMDC devices has been reported only for lateral monolayer devices and attributed to thermally assisted processes arising from impact ionization across a Schottky barrier 16 and formation of p-n junctions 15,17,18 /hBN. (H-J) Band diagrams for the case of zero applied bias (H), intermediate applied bias (I) and high bias (J) for heterostructure presented in (G). 4For brevity we concentrate on current-voltage (I-V) characteristics, photoluminescence (PL) and EL spectra from symmetric devices based on MoS 2 , Fig At low V b , the PL in Fig. 2A is dominated by the neutral A exciton, X 0 , peak 12 at 1.93 eV. We attribute the two weaker and broader peaks at 1.87 and 1.79 eV to bound excitons 22,23 . At certain V b , the PL spectrum changes abruptly with another peak emerging at 1.90 eV. This transition is correlated with an increase in the differential conductivity ( Fig. 2A). We explain this transition as being due to the fact that at this voltage the Fermi level in Gr B rises above the conduction band in MoS 2 , allowing injection of electrons into the QW (Fig. 1I). This allows us to determine the band alignment between In contrast to PL, EL starts only at V b above a certain threshold, Figs. 2B. We associate such behaviour with the Fermi level of Gr T being brought below the edge of the valence band so that holes can be injected to MoS 2 from Gr T (in addition to electrons already injected from Gr B ) as sketched in Fig. 1J. This creates con...
Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.
Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.
Monolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for opto-electronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS 2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQW's) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS 2 and MoSe 2 -based LEQW's shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications. Here we compare MoSe 2 and WSe 2 LEQW's. We show that the EQE of WSe 2 devices grows with temperature, with room temperature EQE reaching 5%, which is 250x more than the previous best performance of MoS 2 and MoSe 2 quantum wells in ambient conditions. We attribute such a different temperature dependences to the inverted sign of spin-2 orbit splitting of conduction band states in tungsten and molybdenum dichalcogenides, which makes the lowest-energy exciton in WSe 2 dark.
We report the electrochemical detection of the redox active cardiac biomarker myoglobin (Mb) using aptamer-functionalized black phosphorus nanostructured electrodes by measuring direct electron transfer. The as-synthesized few-layer black phosphorus nanosheets have been functionalized with poly-l-lysine (PLL) to facilitate binding with generated anti-Mb DNA aptamers on nanostructured electrodes. This aptasensor platform has a record-low detection limit (∼0.524 pg mL(-1)) and sensitivity (36 μA pg(-1) mL cm(-2)) toward Mb with a dynamic response range from 1 pg mL(-1) to 16 μg mL(-1) for Mb in serum samples. This strategy opens up avenues to bedside technologies for multiplexed diagnosis of cardiovascular diseases in complex human samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.