The glancing interaction between an oblique shock wave and a turbulent boundary layer has been studied experimentally using a variable-incidence wedge mounted from the side wall of a supersonic wind tunnel. The Mach number was 2·3 and the Reynolds number 5 × 104, based on the 99·5 % thickness of the boundary layer just upstream of the interaction region. The study includes oil flow pictures, vapour and smoke-screen photographs, wall-pressure distributions and local heat-transfer measurements. The results suggest that the complicated interaction region involves two viscous layers: an induced layer formed from fluid initially in the boundary layer growing along the wedge surface near the root, and the thick turbulent layer on the tunnel side wall. The mutual interference between these layers is described, separation is defined and a discussion of incipient separation is included.
A theoretical analysis has been made of turbulent viscous interaction on iso-thermal surfaces at hypersonic speeds. The important parameters governing the effects of incidence and displacement have been obtained under both strong and weak interaction conditions for flat-plate flows. A more general expression relating boundary-layer growth to the external pressure field and effective body shape has been obtained. The method is applied to the wedge compression corner problem and the results compared with some experimental data.
A hypersonic gun tunnel has been used to measure the heat-transfer-rate distribution over a compression corner under turbulent boundary-layer conditions. Attached, incipient and separated flows are considered. The results are compared with other experimental data and with the predictions of a simple theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.