Although a variety of phenotypes and epigenetic alterations have been reported in animals cloned from somatic cells, the exact nature and consequences of cloning remain unclear. We cloned mice using fresh or short-term cultures of donor cells (cumulus cells, immature Sertoli cells, and fetal or adult fibroblast cells) with defined genetic backgrounds, and then compared the phenotypic and epigenetic characteristics of the cloned mice with those of fertilization-derived control mice. Irrespective of the nucleus-donor cell type, about 50% of the reconstructed embryos developed to the morula/blastocyst stage, but about 90% of these clones showed arrested development between days 5 and 8, shortly after implantation. Most of the clones were alive at term, readily recovered respiration, and did not show any malformations or overgrowths. However, their placentas were two- to threefold larger than those of the controls, due to hyperplasia of the basal (or spongiotrophoblast) layer. Although there was significant suppression of a subset of both imprinted and non-imprinted placental genes, fetal gene suppression was minimal. The seven imprinted genes that we examined were all expressed correctly from the parental alleles. These findings were consistent for every cell type from the midgestation through term stages. Therefore, cloning by nuclear transfer does not perturb the parent-specific imprinting memory that is established during gametogenesis, and the phenotypic and epigenetic effects of cloning are restricted to placental development at the midgestation and term stages. Twelve male mice that were born in a normal manner following nuclear transfer with immature Sertoli cells (B6D2F1 genetic background) were subjected to long-term observation. They died earlier than the genotype-matched controls (50% survival point: 550 days vs. 1028 days, respectively), most probably due to severe pneumonia, which indicates that unexpected phenotypes can appear as a result of the long-term effects of somatic cell cloning.
In this paper, a nonlinear model predictive control (MPC) scheme for constrained mechanical systems with state discontinuity, or state jump, is considered, and a control method which extends a fast numerical algorithm based on continuation and GMRES methods, allowing online implementation for mechanical systems possible, is applied for. The validity of the strategy is demonstrated by a landing control for an acrobat robot based on a commercially avairable humanoid robot, KHR-1, where a general purpose compact computer system named C-CHIP developed at BMC is installed in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.