The results of this study demonstrate that the insulin/DCK formulation can be absorbed in the intestine and that it is biologically efficacious. We therefore suggest that this oral formulation could be used as an alternative to injectable insulin with enhanced clinical effects.
Single-shot nanometer-scale imaging techniques have become important because of their potential application in observing the structural dynamics of nanomaterials. We report here the image reconstruction results obtained using single-shot Fourier transform x-ray holography with an x-ray laser driven by a table top laser system. A minimum resolution of 87 nm was obtained from the reconstructed image. We could also discriminate the aggregates of carbon nanotubes, which shows the feasibility of single-exposure nanoimaging for real specimens using a laser-driven x-ray laser.
We report the manufacturing of an (ultra-)thin foil target made of conjugated polymer, poly(9,9′-dioctylfluorene-co-benzothiadiazole) (F8BT), and the simultaneous observation of laser-accelerated ions and second harmonic radiation, when irradiated with ultrahigh-contrast laser pulse at a maximum intensity of 4 × 1019 W/cm2. Maximum proton energy of 8 MeV is achieved along the target normal direction. Strong second harmonic with over 6% energy ratio compared to fundamental is emitted along the specular direction. Two-dimensional particle-in-cell simulations confirm the simultaneous generation of protons and high-order harmonics, which demonstrates the feasibility of applications requiring particle and radiation sources at once, effectively using the same laser and target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.