British and British x Continental steers (n = 560; initial BW = 339.4 +/- 1.76 kg) were used in a serial slaughter study with a completely random design to evaluate effects of zilpaterol hydrochloride (ZH; 8.33 mg/kg of dietary DM basis) on performance and carcass characteristics. Treatments were arranged in a 4 x 4 factorial (112 pens; 7 pens/treatment; 5 steers/pen) and included duration of ZH feeding (0, 20, 30, or 40 d before slaughter plus a 3-d ZH withdrawal period) and days on feed (DOF) before slaughter (136, 157, 177, and 198 d). No duration of ZH feeding x slaughter group interactions were detected for the performance measurements (P > 0.10). Final BW did not differ (P = 0.15) between the 0-d group and the average of the 3 ZH groups, but ADG was greater for the average of the 3 ZH groups during the period in which ZH diets were fed (P < 0.01) and for the overall feeding period (P = 0.05). As duration of ZH feeding increased, DMI decreased (P = 0.01) and G:F increased linearly (P < 0.01). With the exception of KPH (P = 0.022), no duration of ZH feeding x slaughter group interactions (P > 0.10) were detected for carcass characteristics. Regardless of the duration of ZH feeding, cattle fed ZH had greater HCW (P < 0.01), greater dressing percent (P < 0.01), less 12th-rib fat (P < 0.01), larger LM area (P < 0.01), less KPH (P = 0.03), and lower yield grade (P < 0.01) than the 0-d cattle. The 0-d group had greater marbling scores (P < 0.01) than cattle fed ZH diets, with a tendency for a linear decrease in marbling score (P = 0.10) as duration of ZH feeding was extended. A greater percentage of carcasses in the 0-d group graded USDA Choice or greater (P < 0.01) than in the 3 ZH groups, whereas the percentage of Select carcasses was greater (P = 0.01) for the 3 ZH groups. From d 0 to end (P = 0.04) and during the last 43 d on feed (P < 0.01), ADG responded quadratically to DOF before slaughter. No differences were detected among slaughter groups for DMI for the entire trial period; however, a quadratic response (P = 0.02) was observed for the final 43 d before slaughter. A quadratic response was also detected for the final 43 d before slaughter (P < 0.01) and from d 0 to end (P = 0.02) for G:F. Final BW, HCW, dressing percent, and 12th-rib fat increased linearly (P < 0.01) as DOF before slaughter increased. Our results indicate that no substantial effects on performance and carcass measurements were observed when ZH was fed for 30 or 40 d as opposed to 20 d, and that effects of ZH generally did not interact with DOF before slaughter.
Two randomized complete block design experiments with a factorial arrangement of treatments were conducted to study the effects of corn processing method and inclusion of sorghum wet distillers grain plus solubles (SWDGS) in beef cattle finishing diets. In Exp. 1, 160 crossbred steers (primarily British x Continental breeding; initial BW = 397.6 +/- 29.4 kg) were fed diets based on dry-rolled (DRC) or steam-flaked corn (SFC), with or without the inclusion of 15% SWDGS (DM basis). Corn processing x SWDGS interactions were not detected (P > or = 0.20) for performance and most carcass characteristics. The G:F was less (P < 0.01) with DRC- than with SFC-based diets. Steers fed SFC-based diets had greater 12th-rib fat thickness (P = 0.03), yield grade (P = 0.02), and a smaller LM area (P = 0.08) than steers fed DRC. Inclusion of 15% SWDGS resulted in decreased G:F (P < 0.01) than for diets without SWDGS. In addition, steers fed SWDGS had decreased HCW (P = 0.01) and dressing percent (P = 0.03) than those fed no SWDGS. In Exp. 2, diet samples from Exp. 1 were used to evaluate rate of in vitro gas production, IVDMD, and H(2)S concentrations in gas. No significant corn processing x SWDGS interactions were noted for any of these measurements or for mathematically fitted gas production parameters, except for the predicted maximum value of gas production. The SFC-based diets had greater IVDMD (P = 0.01), area under the gas production curve (AUC; P = 0.02), and rate (k) of gas production (P = 0.02) than DRC-based diets. Inclusion of 15% SWDGS in the substrates decreased IVDMD (P < 0.01), AUC (P = 0.03), and rate of gas production (P = 0.04) compared with 0% SWDGS. Hydrogen sulfide concentrations in gas did not differ (P > 0.10) with corn processing method or addition of SWDGS. Overall, these data suggest that the response to 15% SWDGS in finishing diets was not affected by corn processing method, but including 15% SWDGS in finishing diets decreased G:F, IVDMD, and gas production AUC values to approximately the same extent as replacing SFC with DRC.
Two studies were conducted to evaluate the effects of corn (CDG) and sorghum (SDG) wet distillers grains with solubles on feedlot cattle performance, carcass characteristics, and apparent total tract digestion of nutrients. In Exp. 1, 224 steers were used in a randomized complete block design (initial BW 391.1 +/- 9.51 kg) and fed steam-flaked corn (SFC)-based diets consisting of (DM basis) 0% distillers grains (CON), 15% SDG, 30% SDG, 15% CDG, 30% CDG, 15% of a 50:50 blend of SDG and CDG, and 30% of a 50:50 blend of CDG and SDG. Decreased carcass-adjusted final BW and HCW (P < or = 0.05) were noted as the inclusion amount of distillers grains increased in the diet. Body weight gain efficiency did not differ among the CDG, 50:50 SDG and CDG blend, and CON treatments, but G:F was numerically less with either amount of SDG than for CON, and decreased (P < or = 0.05) as distillers grains were increased from 15 to 30%. Cattle fed CON had greater carcass yield grades than those fed the distillers grain diets (P < or = 0.05). In Exp. 2, crossbred beef steers (n = 36; initial BW 567.3 +/- 53.1 kg) were used in a generalized randomized block design and fed SFC-based diets with 0% distillers grains (CON) and 15% (DM basis) CDG or SDG. Digestibility was determined with a pulse dose of Cr(2)O(3). Feeding steers 15% CDG or SDG increased intakes of CP and NDF (P < or = 0.05), but intakes of DM, OM, and starch did not differ among treatments (P >o r = 0.07). Apparent total tract digestibilities of DM, OM, CP, NDF, and starch (P > or = 0.25) did not differ among the 3 treatments. Fecal pH averaged over all sampling times was not affected by treatment, nor were average fecal pH values for prefeeding samples (0, 24, 48, and 72 h after the pulse dose) or for samples taken after feeding (12, 36, and 60 h after the pulse dose; P > or = 0.11). Results suggest that with 15% distillers grains in the DM, G:F was similar for cattle fed the CDG, 50:50 SDG and CDG blend, and CON diets. Feeding 30 vs. 15% distillers grains decreased G:F, but including 15% CDG or SDG in SFC-based diets did not affect apparent total tract digestibilities in feedlot steers.
Effects of monensin (MON) and S on in vitro fermentation and H(2)S production were evaluated in 2 experiments. In Exp. 1, 2 ruminally cannulated steers were adapted (>14 d) to a 75% concentrate diet [steam-flaked corn (SFC)-based], and ruminal fluid was collected approximately 4 h after feeding. Substrate composed (DM basis) of 85.2% SFC, 9% alfalfa hay, 5% cottonseed meal, and 0.8% urea was added with ruminal fluid and buffer to sealed 125-mL serum bottles to allow for gas collection. A Na(2)SO(4) solution was added to yield S equivalent to 0.2, 0.4, and 0.8% of substrate DM, and MON was included at 0, 2, 4, and 6 mg/L of culture volume. Bottle head-space gas was analyzed for H(2)S. No MON (P = 0.29) or MON x S interaction (P = 0.41) effects were detected for H(2)S production. Increasing S linearly increased (P < 0.01) H(2)S production (micromoles/g of fermented DM). The IVDMD (average 70.0%) was not affected by MON (P = 0.93), S (P = 0.18), or the MON x S interaction (P = 0.56). Total VFA concentrations were not affected by MON (P = 0.87), S (P = 0.14), or the MON x S interaction (P = 0.86), but increasing MON linearly decreased (P
Effects of 3 ionophores and 2 antibiotics on in vitro H(2)S production, IVDMD, total gas production, and VFA profile with or without added S were examined. In Exp. 1, ruminal fluid from 2 ruminally cannulated steers fed a steam-flaked corn-based diet (75% concentrate) without ionophore and antibiotics for 28 d before collection was used to inoculate in vitro cultures. Treatments were control (no ionophore or antibiotic), 3 ionophores (lasalocid sodium and monensin sodium at 5 mg/L or laidlomycin propionate at 1.65 mg/L), and 2 antibiotics (chlortetracycline hydrochloride at 5 mg/L and tylosin tartarate at 1.25 mg/L). Cultures also had 0 or 1.75 mg of S/L (from sodium sulfate). No S x ionophore-antibiotic treatment interactions were noted (P > 0.53) for IVDMD, total gas production, and H(2)S production. Hydrogen sulfide (mumol/g of fermentable DM) was increased (P < 0.001), and total gas production tended (P = 0.09) to be increased with additional S; however, IVDMD was not affected by added S (P = 0.90). Production of H(2)S was not affected by ionophores or antibiotics (P > 0.18). On average, IVDMD (P = 0.05) was greater for ionophores than for antibiotics, whereas total gas production was less for ionophores than for control (P < 0.001) and antibiotics (P < 0.001). Molar proportions of acetate (P < 0.01) and acetate:propionate (P < 0.01) were decreased and propionate was increased (P < 0.001) in ionophore treatments when no S was added, but when S was added there were no differences (P > 0.20) in acetate, propionate, or acetate:propionate between ionophores and control (S x treatment interaction, P = 0.03). In Exp. 2, the effects of ionophore-antibiotic combinations with added S were examined using the same procedures as in Exp. 1. Treatments were control, monensin plus tylosin (MT), and lasalocid plus chlortetracycline (LCTC), with concentrations of the ionophores and antibiotics as in Exp. 1. No differences were observed among treatments for H(2)S production (P > 0.55). Treatments MT and LCTC tended (P = 0.06) to increase IVDMD and decreased (P = 0.02) gas production vs. control. Proportion of acetate (P = 0.01) and acetate:propionate (P < 0.01) were decreased and propionate increased (P = 0.01) for both MT and LCTC compared with control. These data suggest that when S is approximately 0.42% of substrate DM, the 3 ionophores and 2 antibiotics we evaluated did not affect production of H(2)S gas in an in vitro rumen culture system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.