Nitrogen loading to the Bassin d'Arcachon coastal lagoon (SW France) was evaluated by studying land-use and nitrogen output in its 3001 km2 catchment. At present, the catchment is dominated by forestry (79%), while intensive agriculture occupies 9% of the surface. The N-output of two hydrological subunits, i.e. the Tagon subunit dominated by pine forestry and the Arriou II subunit comprising both forestry and intensive agriculture, were monitored for a seven year period (1996)(1997)(1998)(1999)(2000)(2001)(2002). From these observations it was calculated that forestry contributes on average 1.6 kg total N ha−1 yr−1, which is dominated by organic nitrogen (DON + PON are 70% of N). On an areal basis, intensive agriculture contributes 26 times more than forestry, i.e. 41.6 kg total N ha−1 yr−1, which is mainly in the form of nitrate (65% of N). These data were upscaled to the catchment and the upscaling was validated by comparison to gauged nitrogen throughputs for the catchment of the Leyre river that is the major tributary to the system. Taking into account the other known N sources and the interannual variability in the catchment it was estimated that nitrogen loading to the lagoon was on average 90 kg ha−1 yr−1 (range from 54 to 126 kg ha−1 yr−1). The sandy soils of the catchment have a clear potential for denitrification, but anoxic conditions (waterlogged) and input of organic matter to fuel this process are required. Currently, agricultural practices and spatial planning do not make use of this potential. Nitrogen loading in the Bassin d'Arcachon is reflected by 10-40 μM nitrate concentrations in winter, which became depleted during spring as a result of uptake by vegetation. Short-term uptake experiments showed that the macroalga Monostroma obscurum is well adapted to temperatures between 10 to 20 °C and competitive with respect to the seagrass Zostera noltii when the nitrate concentrations are above 10 μM. Spring conditions with high nitrate and high insolation are therefore favourable for M. obscurum and this species presents a high risk for algal blooming. In contrast, the macroalga Enteromorpha clathrata well adapted to summertime temperatures around 25 °C, forms occasionally blooms in the lagoon. This phenomenon is limited due to the low DIN concentrations in summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.