Nitrogen loading to the Bassin d'Arcachon coastal lagoon (SW France) was evaluated by studying land-use and nitrogen output in its 3001 km2 catchment. At present, the catchment is dominated by forestry (79%), while intensive agriculture occupies 9% of the surface. The N-output of two hydrological subunits, i.e. the Tagon subunit dominated by pine forestry and the Arriou II subunit comprising both forestry and intensive agriculture, were monitored for a seven year period (1996)(1997)(1998)(1999)(2000)(2001)(2002). From these observations it was calculated that forestry contributes on average 1.6 kg total N ha−1 yr−1, which is dominated by organic nitrogen (DON + PON are 70% of N). On an areal basis, intensive agriculture contributes 26 times more than forestry, i.e. 41.6 kg total N ha−1 yr−1, which is mainly in the form of nitrate (65% of N). These data were upscaled to the catchment and the upscaling was validated by comparison to gauged nitrogen throughputs for the catchment of the Leyre river that is the major tributary to the system. Taking into account the other known N sources and the interannual variability in the catchment it was estimated that nitrogen loading to the lagoon was on average 90 kg ha−1 yr−1 (range from 54 to 126 kg ha−1 yr−1). The sandy soils of the catchment have a clear potential for denitrification, but anoxic conditions (waterlogged) and input of organic matter to fuel this process are required. Currently, agricultural practices and spatial planning do not make use of this potential. Nitrogen loading in the Bassin d'Arcachon is reflected by 10-40 μM nitrate concentrations in winter, which became depleted during spring as a result of uptake by vegetation. Short-term uptake experiments showed that the macroalga Monostroma obscurum is well adapted to temperatures between 10 to 20 °C and competitive with respect to the seagrass Zostera noltii when the nitrate concentrations are above 10 μM. Spring conditions with high nitrate and high insolation are therefore favourable for M. obscurum and this species presents a high risk for algal blooming. In contrast, the macroalga Enteromorpha clathrata well adapted to summertime temperatures around 25 °C, forms occasionally blooms in the lagoon. This phenomenon is limited due to the low DIN concentrations in summer.
ABSTRACT. The contribution of soft institutional change to improve freshwater governance in the coastal zone will be examined.Freshwater management seeks to reduce losses due to overexploitation of the common-pool resources provided by river catchments and their associated ecosystems. Due to the complexity of the governance system, improving the performance of one coastal social-ecological system means searching for the appropriate "soft" institutional change. In the Pertuis Charentais region, increasing scarcity of freshwater in summer threatens the health of the coastal ecosystem and the sustainability of human activities, which depend on the use of natural resources. The allocation of freshwater among competing uses or concerns is a core issue for integrated coastal zone management. To address this issue, we have constructed an analytical framework that combines the ecosystem services approach with the institutional analysis of common-pool resources, and have developed an integrated simulation tool based on the system dynamic modeling approach. Freshwater scarcity generates three kinds of user conflict: (1) conflict between two extractive uses of freshwater (irrigation and drinking water), (2) conflicts between extractive uses (provisioning services) and other services (support, regulatory, and cultural) provided by freshwater, and (3) competition within a given activity sector (agriculture or shellfish farming). Participation by local managers led to the identification of realistic soft institutional changes that might mitigate conflicts and improve the governance system. These possible institutional changes were then integrated as fixed exogenous parameters in the simulation model. The simulated scenarios suggest that innovative collective arrangements involving farmers could be an alternative to other more restrictive top-down measures. This participatory experiment also illustrates the potential of social-ecological modeling for exploring acceptable new institutional arrangements.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a "good" ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021-2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French "Grenelle law" catchment areas, French Water Development and Management Plan areas, etc. A so-called "reference scenario" represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (W...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.