Constitutive activation of Wnt/b-catenin signaling in cancer results from mutations in pathway components, which frequently coexist with autocrine Wnt signaling or epigenetic silencing of extracellular Wnt antagonists. Among the extracellular Wnt inhibitors, the secreted frizzled-related proteins (SFRPs) are decoy receptors that contain soluble Wnt-binding frizzled domains. In addition to SFRPs, other endogenous molecules harboring frizzled motifs bind to and inhibit Wnt signaling. One of such molecules is V3Nter, a soluble SFRP-like frizzled polypeptide that binds to Wnt3a and inhibits Wnt signaling and expression of the b-catenin target genes cyclin D1 and c-myc. V3Nter is derived from the cell surface extracellular matrix component collagen XVIII. Here, we used HCT116 human colon cancer cells carrying the DS45 activating mutation in one of the alleles of b-catenin to show that V3Nter and SFRP-1 decrease baseline and Wnt3a-induced b-catenin stabilization. Consequently, V3Nter reduces the growth of human colorectal cancer xenografts by specifically controlling cell proliferation and cell cycle progression, without affecting angiogenesis or apoptosis, as shown by decreased
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.