The effects of microencapsulation of Enterococcus faecalis on the growth performance, antioxidant activity, immune function, and cecal microbiota in broilers were investigated. Broilers (1-day-old) were assigned randomly as follows: 5 treatments, 5 replicate pens per treatment, and 20 broilers per pen. Treatments included (1) a basal diet (CON), (2) CON + Aureomycin (1 g/kg of diet) (ANT), (3) CON + free non-encapsulated probiotics (1 × 10(9) cfu/kg of diet) (FREE), (4) CON + pro-encapsulated probiotics (1 × 10(9) cfu/kg of diet) (PRO), and (5) CON + pre-encapsulated probiotics (1 × 10(9) cfu/kg of diet) (PRE). Feedings included starter (1 to 21 d) and grower (21 to 42 d) phases. In the starter phase, the ANT and the PRE groups had greater (P < 0.05) ADG than the CON groups, and the feed conversion ratio (FCR) for these 2 groups was decreased (P < 0.05). In the finisher phase, the PRE and PRO groups had greater (P < 0.05) ADG than the CON group and their FCR was decreased significantly (P < 0.05). During the entire feeding period, only the PRE group showed greater (P < 0.05) ADG and lower (P < 0.05) FCR. On day 21, only birds in the PRE group had greater (P < 0.05) total antioxidant capacity and number of Lactobacillus than the CON group. On day 42, The PRE group showed greater (P < 0.05) superoxide dismutase than the CON group. Serum IgA and IgM concentrations were increased (P < 0.05) in the PRE group. Serum IL-6 in the PRE group was greater (P < 0.05) than in the other groups with the exception of ANT. At the phylum level, Firmicutes was enriched (P < 0.05) and Proteobacteria was depleted (P < 0.05) only in the PRE group. At the genus level, only the PRE diets increased (P < 0.05) the number of both Lactobacillus and Enterococcus. The results indicate that pre-encapsulation assists the efficient functioning of probiotics in broilers.
A study was conducted to determine apparent digestibility coefficients (ADCs) of dry matter (DM), crude protein (CP), lipid, gross energy, phosphorus and amino acids (AAs) from Peruvian fish meal (PFM), native fish meal (NFM), meat bone meal (MBM), dried daphnia meal (DDM), soybean meal (SBM), full-fat soybean (FSBM), cottonseed meals (CSM), rapeseed meal (RSM) and corn gluten meal (CGM) for Pseudobagrus ussuriensis (7.8 ± 0.06 g). Test diets were formulated to contain a 70:30 mixture of reference diet to test ingredient with chromic oxide (5 g kg -1 ) serving as the inert marker. ADCs of DM ranged from 49.94% (CGM) to 87.11% (PFM), the highest ADCs of DM were observed in PFM and the lowest was found in CGM. ADCs of CP in the test ingredients ranged from 74.92% (CGM) to 93.41% (SBM). ADCs of crude lipid ranged from 51.80% (CGM) to 94.07% (PFM) for fish. ADCs of energy ranged from 56.42% (CGM) to 90.09% (PFM). ADCs of phosphorus ranged from 21.81% (CSM) to 65.70% (PFM).AA availability for the test ingredients followed a similar pattern to ADCs of CP, in which values for PFM, NFM and MBM were generally higher (p < .05) than those of other protein ingredients. Among all plant meals, the AA availability values in SBM were higher (p < .05) than those in CGM, CSM and RSM. The availability of most AAs in CGM was the lowest (p < .05) among all tested ingredients. In conclusion, PFM and NFM are good sources of available protein and AAs. When fishmeal supply is limited, MBM and DDM are substitutes for fishmeal reduction in P. ussuriensis diets; at the same time, SBM and FSBM are also very acceptable protein feedstuffs. However, CSM, RSM and CGM could not be used at high levels in P. ussuriensis diets because of their inferior digestibilities. K E Y W O R D Samino acids, apparent digestibility coefficients, feed ingredient, phosphorus, protein, Pseudobagrus ussuriensis
Feeding high-fiber diets decreases cost, but also caloric and nutritional efficiency by modifying intestinal morphology and function. We analyzed the changes in intestinal cell composition, nutrient transporters and receptors, and cell differentiation induced by fibers from different sources. Forty-six finishing pigs (BW 84 ± 7 kg) were fed 1 of 4 diets: corn-soybean (Control; = 12), 23% wheat straw (WS; = 11), 55% corn distillers dried grains with solubles (DDGS; = 11), and 30% soybean hulls (SBH; = 12). Pigs were fed 2 meals daily to an amount equivalent to 2.5% of initial BW for 14 d in metabolism cages. Ilea were collected for histological and gene expression analysis after euthanasia. Data were analyzed using the Kruskal-Wallis test followed by Dunn's multiple comparisons and differences considered significant when < 0.05. The enterocyte marker was increased ( < 0.03) by feeding SBH compared with Control and WS diets. Goblet cells presence was greater ( < 0.01) in pigs fed WS and DDGS compared with Control, and in pigs fed WS compared with SBH ( = 0.02). expression was greater ( < 0.05) in pigs fed DDGS and SBH compared with Control diet. No changes were observed for endocrine and Paneth cells markers, villus and crypt length, or proliferation index. Compared with the Control, gene expression of receptors for oligopeptides, calcium, glucose, fructose, , and and was increased ( < 0.05) by feeding WS and DDGS diets. Feeding SBH diet repressed ( < 0.005) the compared with WS and DDGS diets, while DDGS repressed ( = 0.02) its expression compared with Control. Pigs fed DDGS had reduced ( < 0.001) , and those fed SBH showed increased ( < 0.05) expression compared with WS and DDGS pigs. Feeding WS and DDGS diets induced ( < 0.01) the expression of stem cell marker r-spondin receptor (, while was reduced ( < 0.02) by feeding DDGS compared with Control. The expression of was induced ( < 0.05) by all fibers compared with Control. Transcription factors and were suppressed ( < 0.001) by WS and DDGS compared with Control. In conclusion, feeding diets containing WS and DDGS modulated intestinal differentiation by promoting goblet cells and altered expression of nutrient receptors and transporters in growing pigs, while feeding SBH had less effect.
Utilizing either Agrobacterium-mediated transformation or particle bombardment we obtained transgenic soybean [Glycine max (L.) Merr.] plants expressing the chitinase gene (chi) and the barley ribosome-inactivating protein gene (rip). Six regenerated plants were grown to maturity and set seed. The identification of transgenic soybean plants that co-integrated the two anti-fungal protein genes was determined by polymerase chain reaction (PCR) and Southern blot analysis. Protein detection from the soybean leaves demonstrated the expression of the chitinase (CHI) and the ribosome-inactivating protein (RIP) in the six R 0 transformants. Soybean cotyledonary nodes were transformed using the bivalent plant expression vector pBRC containing chi and rip both driven by the CaMV 35S double promoter. Following vacuum (0.06 MPa) infiltration treatment of the tissue for 5 min, Agrobacterium was co-cultivated with the cotyledonary nodes for 3 d on MSB medium (MS salts and B 5 vitamins) (pH 5.2), the transformation frequency reached a maximum of 1.33 %. The chi and rip genes were present in all the transgenic plants. Co-bombardment of immature cotyledons with plasmids pBchE (encoding chi) and pARIP (encoding rip) resulted in a maximum transformation frequency of 0.52 % with a 50 % co-integration rate. Our results demonstrate efficient co-transformation of multiple genes in soybean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.