To understand the molecular events underlying the dentin-pulp complex responses to carious progression, we systematically analyzed tissue morphology and dentin matrix protein distribution in non-carious teeth and in teeth with enamel and dentin caries. Dentin matrix proteins analyzed included collagen type I, phosphophoryn (PP) and dentin sialoprotein (DSP), all of which play decisive roles in the dentin mineralization process. Human non-carious and carious third molar teeth were freshly collected, demineralized, and processed for hematoxylin and eosin staining. The ABC-peroxidase method was used for immunohistochemical staining of collagen type I, PP and DSP proteins using specific antibodies. In situ hybridization was also performed. In contrast to elongated odontoblasts in non-carious teeth, odontoblasts subjacent to dentin caries were cuboidal and fewer in number. The predentin zone was also dramatically reduced in teeth with dentin caries. The staining intensity for collagen type I, PP and DSP in the dentin-pulp complex increased progressively from non-carious teeth, to teeth with enamel and dentin caries. In situ hybridization studies showed DSP-PP mRNA expression in odontoblasts and dental pulp that was consistent with our immunohistochemical results. These results suggest that carious lesions stimulate the dentin-pulp complex to actively synthesize collagen type I, PP and DSP proteins. This response to carious lesions is likely to provide a basis for reparative and/or reactionary dentin formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.