The ability to accurately and consistently determine the surface electronic properties of polar materials is of great importance for device applications. Polar surface modelling is fundamentally limited by the spontaneous polarisation of these materials in a periodic boundary condition scheme. Surface data are sensitive to supercell parameters, including slab and vacuum thicknesses, as well as the non-equivalence of surface adsorbates on opposite surfaces. Using 4H-SiC as a specific case, this study explores calculation of electron affinities (EAs) of ( 0001) and ( 0001) surfaces varying chemical termination as a function of computational parameters. We report the impact in terms of band-gap, electric fields across the vacuum and slab for single and double cell slab models, where the latter is constructed with inversional symmetry to eliminate the electric field in the vacuum regions. We find that single cells are sensitive to both slab and vacuum thickness. The band-gap narrows with slab thickness, ultimately vanishing and inducing charge transfer between opposite surfaces. This has a consequence for predicted EAs. Adsorbate species are found to play a crucial role in the rate of narrowing. Back to back cells with inversional symmetry have larger electric fields present across the slab than the single slab cases, resulting in a greater band-gap narrowing effect, but the vacuum thickness dependence is completely removed. We discuss the relative merits of the two approaches.
Control over the chemical termination of diamond surfaces has shown great promise in the realization of field-emission applications, the selection of charge states of near-surface colourcentres such as NV, and the realisation of surface-conductive channels for electronic device applications. Experimental investigations of ultra-thin Si and Ge layers yield surface states both within the band-gap and resonant with the underlying diamond valence band. In this report, we report the results of density-functional simulations of a range of coverages of Si and Ge on diamond (0 0 1) surfaces. We have found that surface coverage with crystallogen:carbon ratios of 67% and 75% are more stable than both higher and lower coverages on the (0 0 1)-diamond surface, and that they can explain the observation of an occupied band around 1.7 eV below the valence band top. We also report geometries, adsorption energies and electron affinities of these surface structures, and show that the resonant state is made up from conventional spd-covalent σ-bonding orbitals between the surface adsorbates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.