Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Conventional surface plasmons have a wave vector exceeding that of light in vacuum, and therefore cannot be directly excited by light that is simply incident on the surface. However, we propose that a plasmonpolariton state can be formed at the boundary between a metal and a dielectric Bragg mirror that can have a zero in-plane wave vector and therefore can be produced by direct optical excitation. In analogy with the electronic states at a crystal surface proposed by Tamm, we call these excitations Tamm plasmons, and predict that they may exist in both the TE and TM polarizations and are characterized by parabolic dispersion relations.
We report on the first experimental observation of Tamm plasmon polaritons (TPPs) formed at the interface between a metal and a dielectric Bragg reflector (DBR). In contrast to conventional surface plasmons, TPPs have an in-plane wavevector less than the wavevector of light in vacuum, which allows for their direct optical excitation. The angular resolved reflectivity and transmission spectra of a GaAs∕AlAs DBR covered by Au films of various thicknesses show the resonances associated with the TPP at low temperatures and room temperature. The in-plane dispersion of TTPs is parabolic with an effective mass of 4×10−5 of the free electron mass.
Terahertz (THz) radiation occupies that region of the electromagnetic (EM) spectrum between approximately 0.3 and 20 THz. Recent advances in methods of producing THz radiation have stimulated interest in studying the interaction between radiation and biological molecules and tissue. Given that the photon energies associated with this region of the spectrum are 2.0 x 10(-22) to 1.3 x 10(-20) J, an analysis of the interactions requires an understanding of the permittivity and conductivity of the medium (which describe the bulk motions of the molecules) and the possible transitions between the molecular energy levels. This paper reviews current understanding of the interactions between THz radiation and biological molecules, cells and tissues. At frequencies below approximately 6 THz. the interaction may be understood as a classical EM wave interaction (using the parameters of permittivity and conductivity), whereas at higher frequencies. transitions between different molecular vibrational and rotational energy levels become increasingly important and are more readily understood using a quantum-mechanical framework. The latter is of particular interest in using THz to probe transitions between different vibrational modes of deoxyribonucleic acid. Much additional experimental work is required in order to fully understand the interactions between THz radiation and biological molecules and tissue.
Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.
An imaging system has been developed based on pulses of Terahertz (THz) radiation generated and detected using all-optical effects accessed by irradiating semiconductors with ultrafast (fs-ps) pulses of visible laser light. This technique, commonly referred to as T-Ray Imaging or THz Pulse Imaging (TPI), holds enormous promise for certain aspects of medical imaging. We have conducted an initial survey of possible medical applications of TPI and demonstrated that TPI images show good contrast between different animal tissue types (muscle, fat, kidney, skin, cartilage). Moreover, the diagnostic power of TPI has been elucidated by the spectra available at each pixel in the image, which are markedly different for the different tissue types. This suggests that the spectral information inherent in TPI might be used to identify the type of soft and hard tissue at each pixel in an image and provide other diagnostic information not afforded by conventional imaging techniques.Preliminary TPI studies ofpork skin show that 3D tomographic imaging ofthe skin surface and thickness is possible, and data from experiments on models of the human dermis are presented which demonstrate that different constituents of skin have different refractive indices. Lastly, we present the first THz image of human tissue, namely an extracted tooth. The time of flight of THz pulses through the tooth allows the thickness of the enamel to be determined, and is used to create an image showing the enamel and dentine regions. Absorption of THz pulses in the tooth allows the pulp cavity region to be identified. Initial evidence strongly suggests that TPI may be used to provide valuable diagnostic information pertaining to the enamel, dentine, and the pulp cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.