Essential oils (EO) and short-chain fatty acids have potential antimicrobial activity in broilers. This study aimed to investigate the effect of a specific blend of EO and a combination of this blend of EO with sodium-butyrate on growth performance and Salmonella colonization in broilers. A total of 480 one-day-old male broilers were distributed into 5 treatments (8 pens per treatment and 12 birds per pen) and reared during 42 d in experimental conditions. Dietary treatments consisted of the addition of different doses of EO (0 mg/kg, control; 50 mg/kg, EO50 and 100 mg/kg, EO100) or a combination of EO with 1 g/kg of sodium-butyrate (B; EO50 + B, EOB50 and EO100 + B, EOB100) to a basal diet. All birds were orally infected with 10(8) cfu of Salmonella Enteritidis on d 7 of study. Individual BW and feed intake per pen were measured at arrival and on a weekly basis. The prevalence and enumeration of Salmonella in feces was determined per treatment at 72 h postinfection and on d 23 and 37 of study. At slaughter, cecal content and liver samples from 16 birds per treatment were cultured for Salmonella and cecal pH was measured. No differences were observed on growth performance among treatments. All fecal samples analyzed were positive for Salmonella from d 10 to the end of the rearing period. At slaughter, Salmonella contamination (positive samples) in cecum was lower in birds fed EOB50 compared with the other treatments (P < 0.05), whereas birds fed the control diet showed the highest colonization rates. The pH of the cecal content was not different among treatments. Thus, EO or its combination with sodium-butyrate did not affect growth performance. However, a clear effectiveness of these products was observed in Salmonella control, especially when low doses of EO were combined with sodium-butyrate (EOB50).
The effect of barley storage time and dietary enzyme addition on the energy value of barley-based broiler diets was studied in two experiments. A two-rowed winter barley (Beka cultivar) was stored at room temperature for 0, 3, 6, 16, and 32 wk after harvesting. At these dates, diets were formulated using 50% barley with and without the addition of a commercial beta-glucanase-based enzyme product. In Experiment 1, 320 Arbor Acres chickens (eight replicates of three 10-d-old birds and eight replicates of one 30-d-old bird, per treatment) were fed the experimental diets to determine the AMEn following a 2 x 2 x 5 (age by enzyme by barley storage time) factorial design. At the end of the metabolism trial, viscosity of the intestinal contents was determined in 30-d-old broilers. Total beta-glucan, nonstarch polysaccharides (NSP), in vitro viscosity, and endogenous enzyme activity of barley grain decreased with increasing storage time. Dietary AMEn increased with barley storage time (from 2,755 to 2,939 kcal/kg DM, P < 0.001, for 0 and 32 wk of storage, respectively), with enzyme addition (2,861 vs 2,919 kcal/kg DM, P < 0.003), and with the age of animals (2,826 and 2,958 kcal/kg DM for 10- and 30-d-old chickens, respectively, P < 0.001). Interactions of enzyme and age by barley storage time (P < 0.02 and P < 0.001, respectively) were also detected. These data indicate that the minimum time of barley storage before its inclusion in broiler feed depends on the animals' age (more than 6 wk for 10-d-old chickens and 3 wk for 30-d-old chickens), and that the use of enzymes allowed a reduction in the time of barley storage. Digesta viscosity decreased with barley storage time (P < 0.001), and with enzyme addition (P < 0.001), an interaction of storage time by enzyme addition was shown (P < 0.007). Digesta viscosity was also negatively related to the dietary AMEn content (r = -0.68, P < 0.01). In vitro barley viscosity explained 53 and 90% of the variation in gut viscosity produced by unsupplemented and enzyme supplemented diets, respectively. In Experiment 2, the same diets as Experiment 1 and the barley grain were intubated into 120 adult roosters (Hy-Line) to determine TMEn. Dietary and barley TMEn values were not affected by barley storage time or enzyme addition (3,237 and 3,037 kcal TMEn/kg DM for diets and barley, respectively).
Three experiments were conducted to study eight barley cultivars and the effect of enzyme addition on their energy value for poultry. In Experiment 1, the AMEn of a reference barley (Beka cultivar) was calculated by increasing barley concentrations (30, 40, 50, and 60%) that replaced a high protein basal diet. In Experiment 2, eight barley cultivars (four spring and four winter cultivars) replaced the reference barley in the diet with 50% barley inclusion. Two of the winter cultivars were two-rowed and two were six-rowed cultivars. A commercial enzyme was added to these diets to study the effect of enzyme addition. Diets were consumed ad libitum by 27 and 145 21-d-old Arbor Acres broiler chicks, in Experiments 1 and 2, respectively. In Experiment 3, 66 adult roosters were used to determine the TMEn of the eight cultivars used in Experiment 2. Dietary AMEn decreased linearly (P < 0.05) with increasing barley (Beka cultivar) inclusion. Beka barley AMEn was calculated by extrapolation of the linear regression equation be equal to 2,980 kcal/kg DM. Barley energy value was influenced by cultivar (P < 0.001); the spring cultivars showed greater energy value than the winter cultivars (2,963 vs 2,852 kcal AMEn/kg DM; 3,192 vs 2,929 kcal TMEn/kg DM). Two-rowed cultivars showed higher TMEn than six-rowed winter cultivars, although no differences were found for AMEn. The correlation between AMEn and TMEn values of barley was relatively low (r = 0.69); therefore, barley TMEn cannot be extrapolated to AMEn for young chicks. Enzyme addition produced an average increase of 220 kcal/kg DM in barley AMEn (P < 0.001); there was a significant (P < 0.10) interaction between barley cultivar and enzyme supplementation. The increment of barley AMEn caused by enzyme addition was partly explained (47%) by an increase in barley viscosity. This relationship implies that enzyme supplementation significantly improves the feeding value of high as compared to low viscosity barley samples, which involved a decrease in AMEn variation among cultivars for enzyme-supplemented barley. No relationship was found between AMEn of unsupplemented barley cultivars and their chemical composition. Instead, a relationship was detected for enzyme-supplemented barley; therefore two equations were proposed for predicting the AMEn of enzyme-supplemented barley to be used directly in diet formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.