To determine if 12-h sleep deprivation disrupts neural plasticity, we compared long-term potentiation (LTP) in five sleep-deprived and five control rats. Thirty minutes after tetanus population spike amplitude increased 101 +/- 15% in 16 slices from sleep deprived rats and 139 +/- 14% in 14 slices from control rats. This significant (P < 0.05) reduction of LTP, the first demonstration that the sleep deprivation protocol impairs plasticity in adult rats, may be due to several factors. Reduced LTP may indicate that sleep provides a period of recuperation for cellular processes underlying neural plasticity. Alternatively, the stress of sleep deprivation, as indicated by elevated blood corticosterone levels, or other non-sleep-specific factors of deprivation may contribute to the LTP reduction.
Presynaptic metabotropic glutamate receptors (mGluRs) serve as autoreceptors throughout the CNS to inhibit glutamate release and depress glutamatergic transmission. Both presynaptic and postsynaptic mGluRs have been implicated in shaping autonomic signal transmission in the nucleus tractus solitarius (NTS). We sought to test the hypothesis that activation of presynaptic mGluRs depresses neurotransmission between primary autonomic afferent fibres and second‐order NTS neurones. In second‐order NTS neurones, excitatory postsynaptic currents (EPSCs) synaptically evoked by stimulation of primary sensory afferent fibres in the tractus solitarius (ts) and currents postsynaptically evoked by α‐amino‐3‐hydroxy‐4‐isoxazoleproprionic acid (AMPA) were studied in the presence and absence of mGluR agonists and antagonists. Real‐time quantitative RT‐PCR (reverse transcription‐polymerase chain reaction) was used to determine whether the genes for the mGluR subtypes were expressed in the cell bodies of the primary autonomic afferent fibres. Agonist activation of Group II and III but not Group I mGluRs reduced the peak amplitude of synaptically (ts) evoked EPSCs in a concentration‐dependent manner while having no effect on postsynaptically (AMPA) evoked currents recorded in the same neurones. At the highest concentrations, the Group II agonist, (2S,3S,4S)‐CCG/(2S,1′S,2′S)‐2‐carboxycyclopropyl (l‐CCG‐I), decreased the amplitude of the ts‐evoked EPSCs by 39 % with an EC50 of 21 μm, and the Group III agonist, l(+)‐2‐amino‐4‐phosphonobutyric acid (l‐AP4), decreased the evoked EPSCs by 71 % with an EC50 of 1 mm. mRNA for all eight mGluR subtypes was detected in the autonomic afferent fibre cell bodies in the nodose and jugular ganglia. Group II and III antagonists ((2S,3S,4S)‐2‐methyl‐2‐(carboxycyclopropyl)glycine (MCCG) and (RS)‐α‐methylserine‐O‐phosphate (MSOP)), at concentrations that blocked the respective agonist‐induced synaptic depression, attenuated the frequency‐dependent synaptic depression associated with increasing frequencies of ts stimulation by 13–34 % and 13–19 %, respectively (P < 0.05, for each). We conclude that Group II and III mGluRs (synthesized in the cell bodies of the primary autonomic afferent fibres and transported to the central terminals in the NTS) contribute to the depression of autonomic signal transmission by attenuating presynaptic release of glutamate.
The nucleus of the solitary tract (NTS) is a principal site for coordinating the reflex control of autonomic function. The nucleus receives and organizes primary visceral (sensory) afferent inputs from the great vessels, heart, lung, and gastrointestinal organs. Glutamate, the excitatory neurotransmitter released by the primary afferent fibers, activates non-N-methyl-D-aspartate (non-NMDA) receptors on second-order neurons in the NTS. Still in question is whether NMDA receptors on the second-order neurons are also activated. Accordingly, the purpose of this study was to directly determine whether NMDA receptors contribute to synaptic transmission of primary visceral afferent input to second-order neurons in the NTS. Whole cell patch-clamp recordings were obtained from intermediate and caudal NTS neurons in rat coronal medullary slices. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of the solitary tract (1-25 V, 0.1 ms, 0.2 or 0.5 Hz) at membrane potentials ranging from -90 to +60 mV. In 28 of 32 neurons in which current-voltage relationships were obtained for solitary-tract-evoked EPSCs, the currents had short onset latencies (3.42 +/- 1.03 ms, mean +/- SD), indicating that they were the result of monosynaptic activation of second-order neurons. Solitary-tract-evoked EPSCs had both a fast and a slow component. The amplitude of the slow component was nonlinearly related to voltage (being revealed only at membrane potentials positive to -45 mV), blocked by the NMDA receptor antagonist DL-2-amino-5-monophosphovaleric acid (APV, 50 microM; n = 12; P = 0.0001), and enhanced in nominally Mg2+-free perfusate at membrane potentials negative to -45 mV (n = 5; P = 0.016), demonstrating that the slow component was mediated by NMDA receptors. The amplitude of the fast component was linearly related to voltage and blocked by the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX, 3 microM; n = 9; P = 0.0014), demonstrating that the fast component was mediated by non-NMDA receptors. The slow component of the EPSCs was not blocked by NBQX (n = 6; P = 0.134), nor was the fast component blocked by APV (n = 12; P = 0.124). These results show that both NMDA and non-NMDA receptors coexist on the same second-order NTS neurons and mediate primary visceral afferent transmission in the NTS. The participation of NMDA receptors suggests that second-order neurons in the NTS may have previously unrecognized integrative capabilities in the reflex control of autonomic function.
With increasing frequencies of autonomic afferent input to the nucleus tractus solitarii (NTS), postsynaptic responses are depressed. To test the hypothesis that a presynaptic mechanism contributes to this frequency-dependent depression, we used whole cell, voltage-clamp recordings in an NTS slice. First, we determined whether solitary tract stimulation (0.4-24 Hz) resulted in frequency-dependent depression of excitatory postsynaptic currents (EPSCs) in second-order neurons. Second, because decreases in presynaptic glutamate release result in a parallel depression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor-mediated components of EPSCs, we determined whether the magnitude, time course, and recovery from the depression were the same in both EPSC components. Third, to determine whether AMPA receptor desensitization contributed, we examined the depression during cyclothiazide. EPSCs decreased in a frequency-dependent manner by up to 76% in second- and 92% in higher-order neurons. AMPA and NMDA EPSC components were depressed with the same magnitude (by 83% and 83%) and time constant (113 and 103 ms). The time constant for the recovery was also not different (1.2 and 0.8 s). Cyclothiazide did not affect synaptic depression at >/=3 Hz. The data suggest that presynaptic mechanism(s) at the first NTS synapse mediate frequency-dependent synaptic depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.