The nucleus of the solitary tract (NTS) is a principal site for coordinating the reflex control of autonomic function. The nucleus receives and organizes primary visceral (sensory) afferent inputs from the great vessels, heart, lung, and gastrointestinal organs. Glutamate, the excitatory neurotransmitter released by the primary afferent fibers, activates non-N-methyl-D-aspartate (non-NMDA) receptors on second-order neurons in the NTS. Still in question is whether NMDA receptors on the second-order neurons are also activated. Accordingly, the purpose of this study was to directly determine whether NMDA receptors contribute to synaptic transmission of primary visceral afferent input to second-order neurons in the NTS. Whole cell patch-clamp recordings were obtained from intermediate and caudal NTS neurons in rat coronal medullary slices. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of the solitary tract (1-25 V, 0.1 ms, 0.2 or 0.5 Hz) at membrane potentials ranging from -90 to +60 mV. In 28 of 32 neurons in which current-voltage relationships were obtained for solitary-tract-evoked EPSCs, the currents had short onset latencies (3.42 +/- 1.03 ms, mean +/- SD), indicating that they were the result of monosynaptic activation of second-order neurons. Solitary-tract-evoked EPSCs had both a fast and a slow component. The amplitude of the slow component was nonlinearly related to voltage (being revealed only at membrane potentials positive to -45 mV), blocked by the NMDA receptor antagonist DL-2-amino-5-monophosphovaleric acid (APV, 50 microM; n = 12; P = 0.0001), and enhanced in nominally Mg2+-free perfusate at membrane potentials negative to -45 mV (n = 5; P = 0.016), demonstrating that the slow component was mediated by NMDA receptors. The amplitude of the fast component was linearly related to voltage and blocked by the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX, 3 microM; n = 9; P = 0.0014), demonstrating that the fast component was mediated by non-NMDA receptors. The slow component of the EPSCs was not blocked by NBQX (n = 6; P = 0.134), nor was the fast component blocked by APV (n = 12; P = 0.124). These results show that both NMDA and non-NMDA receptors coexist on the same second-order NTS neurons and mediate primary visceral afferent transmission in the NTS. The participation of NMDA receptors suggests that second-order neurons in the NTS may have previously unrecognized integrative capabilities in the reflex control of autonomic function.
Fuentes RA, Aguilar MI, Aylwin ML, Maldonado PE. Neuronal activity of mitral-tufted cells in awake rats during passive and active odorant stimulation. J Neurophysiol 100: 422-430, 2008. First published May 21, 2008 doi:10.1152/jn.00095.2008. Odorants induce specific modulation of mitral/tufted (MT) cells' firing rate in the mammalian olfactory bulb (OB), inducing temporal patterns of neuronal discharge embedded in an oscillatory local field potential (LFP). While most studies have examined anesthetized animals, little is known about the firing rate and temporal patterns of OB single units and population activity in awake behaving mammals. We examined the firing rate and oscillatory activity of MT cells and LFP signals in behaving rats during two olfactory tasks: passive exposure (PE) and two-alternative (TA) choice discrimination. MT inhibitory responses are predominant in the TA task (76.5%), whereas MT excitatory responses predominate in the PE task (59.2%). Rhythmic discharge in the 12-to 100-Hz range was found in 79.0 and 68.9% of MT cells during PE and TA tasks, respectively. Most odorants presented in PE task increase rhythmic discharges at frequencies Ͼ50 Hz, whereas in TA, one of four odorants produced a modest increment Ͻ40 Hz. LFP oscillations were clearly modulated by odorants during the TA task, increasing their oscillatory power at frequencies centered at 20 Hz and decreasing power at frequencies Ͼ50 Hz. Our results indicate that firing rate responses of MT cells in awake animals are behaviorally modulated with inhibition being a prominent feature of this modulation. The occurrence of oscillatory patterns in single-and multiunitary discharge is also related to stimulation and behavioral context, while the oscillatory patterns of the neuronal population showed a strong dependence on odorant stimulation.
Mammals actively sample the environment for relevant olfactory objects. This active sampling is revealed by rapid changes in respiratory rate that influence the olfactory input. Yet the role of sniffing in shaping the neural responses to odorants has not been elucidated. In the olfactory bulb (OB), odorant-evoked gamma oscillations reflect the synchronous activity of mitral/tufted cells, a proposed mechanism for odorant representation. Here we examined the effect of sniffing frequency on the odorant-evoked gamma oscillations in the OB. We simultaneously recorded the respiratory rate and the local field potential while rats performed a lick/no-lick olfactory discrimination task with low odorant concentrations. High-frequency sniffing (HFS) augmented the power of gamma oscillations, suggesting an increase in the sensitivity to odorants. By contrast, coupling of the gamma oscillations to the sniff cycle and the amplitude of individual bursts were not modified by the respiratory rate. However, HFS prolonged the overall response to odorants and increased the frequency of the gamma oscillations, indicating that HFS reduces the adaptation to continuous odorant stimulation. Therefore, the increase in gamma power during HFS is the result of more frequent gamma bursts and the extended response to odorants. As odorant discrimination can be performed in a single sniff, a reduction in the adaptation mediated by HFS of novel odorants may facilitate odorant memory formation for subsequent odorant identification. Finally, these results corroborate that olfactory sampling should be integrated to the study of odorant coding in behaving animals.
Area postrema (AP) modulates cardiovascular function through excitatory projections to neurons in nucleus tractus solitarius (NTS), which also process primary sensory (including cardiovascular-related) input via the solitary tract (TS). The neurotransmitter(s) and their receptors in the AP-NTS pathway have not been fully characterized. We used whole cell recordings in voltage- and current-clamp modes in the rat brain stem slice to examine the role of ionotropic glutamatergic receptors and α2-adrenergic receptors in the pathway from AP to NTS neurons receiving visceral afferent information via the TS. In neurons voltage clamped at potentials from −100 to +80 mV, AP stimulation (0.2 Hz) evoked excitatory postsynaptic currents having a fast component blocked by the non- N-methyl-d-aspartate (NMDA) receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzoquinoxaline-7-sulfonamide (NBQX; 3 μM, n = 7) and a slow component blocked by the NMDA receptor antagonistdl-2-amino-5-phosphonovaleric acid (APV; 50 μM, n = 8). Although NBQX (3 μM, n = 14) abolished AP-evoked action potentials, APV (50 μM, n = 9 or 500 μM, n = 6) or yohimbine, (200 nM, n = 5 or 2 μM, n = 10) did not. Thus, although AP stimulation activates both non-NMDA and NMDA receptors on NTS neurons receiving TS input, only non-NMDA receptors are required for synaptic transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.