Campylobacter-like organisms were isolated from the faeces of healthy individuals during a hygiene survey of abattoir workers. The strains, which exhibited characteristics of Campylobacter, being non-glucose-fermenting, oxidase-and catalase-positive, Gram-negative, motile rods, were identified to the genus level by a PCR assay. Nucleotide sequence analysis of the 16S rRNA gene, DNA homology experiments and determination of GMC content demonstrated that they constituted a previously undescribed species, whose nearest phylogenetic neighbours were Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter fetus and Campylobacter mucosalis. The name Campylobacter lanienae sp. nov. is proposed for this taxon and species-specific PCR primers were evaluated which will find use in the study of its epidemiology, prevalence and pathogenicity.
We describe rapid PCR-biprobe identification of Campylobacter spp.. This is based on real-time PCR with product analysis in the same system. The assay identifies enteropathogenic campylobacters to the species level on the basis of their degree of hybridization to three 16S ribosomal DNA (rDNA) biprobes. First-round symmetric PCR is performed with genus-specific primers which selectively target and amplify a portion of the 16S rRNA gene common to all Campylobacter species. Second-round asymmetric PCR is performed in a LightCycler in the presence of one of three biprobes; the identity of an amplified DNA-biprobe duplex is established after determination of the species-specific melting peak temperature. The biprobe specificities were determined by testing 37 reference strains of Campylobacter, Helicobacter, and Arcobacter spp. and 59 Penner serotype reference strains of Campylobacter jejuni and C. coli. From the combination of melting peak profiles for each probe, an identification scheme was devised which accurately detected the five taxa pathogenic for humans (C. jejuni/C. coli, C. lari, C. upsaliensis, C. hyointestinalis, and C. fetus), as well as C. helveticus and C. lanienae. The assay was evaluated with 110 blind-tested field isolates; when the code was broken their previous phenotypic species identification was confirmed in every case. The PCR-biprobe assay also identified campylobacters directly from fecal DNA. PCR-biprobe testing of stools from 38 diarrheic subjects was 100% concordant with PCR-enzyme-linked immunosorbent assay identification (13, 20) and thus more sensitive than phenotypic identification following microaerobic culture.
Sequences of 16S rDNA of a novel campylobacter from faeces of healthy humans were previously shown to originate from a new taxon, ' Candidatus Campylobacter hominis ', which could not be cultured. Since phylogenetic analysis suggested that anaerobic conditions might be required for growth, an isolation strategy was developed employing initial non-selective membrane filtration onto fastidious anaerobe agar. Campylobacters were then isolated from the resulting mixed microbial flora by a dilution strategy and/or by immunomagnetic separation with genus-specific polyclonal antibody. Isolates were identified by a genus and taxon-specific PCR assay, and 16S rDNA nucleotide sequence analysis was carried out. All isolates exhibited the typical Campylobacter characteristics of being non-fermentative, oxidase-positive, catalase-negative and Gram-negative. Unusually, however, they were straight rods lacking flagella. The 16S rDNA nucleotide sequence analysis, DNA and mol % GMC were consistent with a new Campylobacter species whose nearest phylogenetic neighbours were Campylobacter gracilis and Campylobacter sputorum. The unique species status of the isolates was further confirmed by taxonomic analysis of 47 phenotypic characteristics. The name Campylobacter hominis sp. nov. is proposed for the new species, the type strain of which is NCTC 13146 T (l LMG 19568 T ).
A PCR-based study of the incidence of enteropathogenic campylobacter infection in humans was done on the basis of a detection and identification algorithm consisting of screening PCRs and species identification by PCR-enzyme-linked immunosorbent assay. This was applied to DNA extracted from 3,738 fecal samples from patients with sporadic cases of acute gastroenteritis, submitted by seven regional Public Health Laboratories in England and Wales over a 2-year period. The sending laboratories had cultured “Campylobacterspp.” from 464 samples. The PCR methodologies detected 492Campylobacter-positive samples, and the combination of culture and PCR yielded 543 Campylobacter-positive samples. There was identity (overlap) for 413 samples, but 79 PCR-positive samples were culture negative, and 51 culture-positive samples were PCR negative. While there was no statistically significant difference between PCR and culture in detection of C. jejuni-C. coli(PCR, 478 samples; culture, 461 samples), PCR provided unique data about mixed infections and non-C. jejuni and non- C. coli campylobacters. Mixed infections withC. jejuni and C. coli were found in 19 samples, and mixed infection with C. jejuni and C. upsaliensis was found in one sample; this was not apparent from culture. Eleven cases of gastroenteritis were attributed to C. upsaliensis by PCR, three cases were attributed to C. hyointestinalis, and one case was attributed to C. lari. This represents the highest incidence of C. hyointestinalis yet reported from human gastroenteritis, while the low incidence of C. larisuggests that it is less important in this context.
The published genome sequence of Campylobacter jejuni strain NCTC 11168 was used to model an accurate and highly reproducible fluorescent amplified fragment length polymorphism (FAFLP) analysis. Predicted and experimentally observed amplified fragments (AFs) generated with the primer pair HindIII؉A and HhaI؉A were compared. All but one of the 61 predicted AFs were reproducibly detected, and no unpredicted fragments were amplified. This FAFLP analysis was used to genotype 74 C. jejuni strains belonging to the nine heat-stable (HS) serotypes most prevalent in human disease in England and Wales. The 74 C. jejuni strains exhibited 60 FAFLP profiles, and cluster analysis of them yielded a radial tree showing genetic relationships between and within 13 major clusters. Some clusters were related, and others were unrelated, to a single HS serotype. For example, all strains belonging to serotypes HS6 and HS19 grouped into corresponding single genotypic clusters, while strains of serotypes HS11 and HS18 each grouped into two genotypic clusters. Strains of HS50, the most prevalent serotype infecting humans, were found both in one large (multiserotype) cluster complex and dispersed throughout the tree. The strain genotypes within each FAFLP cluster were characterized by a particular combination of AFs, and among the cluster there were additional differential AFs. Identification of such AFs could act as a search tool to look for potential associations with disease or animal hosts, when applied to large number of human isolates. Genome-sequence based FAFLP, thus, has the potential to establish a genetic database for epidemiological investigations of Campylobacter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.