a b s t r a c tIn this paper we aim to clarify the generation of Internal Solitary Waves (ISWs) at work to the east of the Mascarene Plateau (Indian Ocean) using Synthetic Aperture Radar (SAR) imagery and MITgcm fully nonlinear and nonhydrostatic simulations. Realistic representations of stratification and bathymetry are used with asymmetric tidal forcing (including the steady South Equatorial Current which is assumed barotropic in the model) along a 2D transect aligned with the propagation direction of the wave signatures identified in the SAR. The combined flow (i.e. steady and tidal currents) is subcritical with respect to first-mode Internal Waves (IWs), but supercritical with respect to higher wave modes. Different types of nonlinear wave trains with distinct origins (i.e. tidal phase and location) have been identified with the combined aid of model and SAR: (1) large-scale primary mode-1 ISWs evolve from the disintegration of a multimodal baroclinic structure that appears on the upstream side of the sill; (2) mode-2 ISW-like waves that evolve from this same baroclinic structure and are arrested over the sill before being released upstream at the change of flow condition; (3) a large mode-2 lee wave is generated downstream of the sill (i.e. on the west side), which is trapped there during maximum westward tidal flow and released upstream when the tide relaxes; and (4) mode-2 ISW-like waves whose length-scales are O (20 km) appear some 50 km upstream of the sill, after an Internal Tide (IT) beam scatters into the pycnocline, itself originating from critical topography on the leeward (i.e. westward) side of the sill. The underwater sill being investigated is in the mixed-tidal-lee wave regime, where the internal tide release mechanism, lee wave generation and IT beams can coexist. The large-scale mode-2 ISW-like waves that form far upstream from the sill are long-lived features and can be identified in the SAR due to associated short-scale mode-1 ISWs which propagate with the same phase speed, i.e. in resonance. This coupling is also seen in the model, and here it is argued that the formation of those mode-2 ISW-like waves appears to originate from the IT beam after it reflects from the sea surface and interacts with the pycnocline, a generation mechanism referred in the literature as "local generation of ISWs". This IW generation process may be easily overlooked and could be at work in many more regions of the world than previously thought.
Abstract. Synthetic aperture radar (SAR) imagery from the Amazon shelf break region in the tropical west Atlantic reveals for the first time the two-dimensional horizontal structure of an intense Internal Solitary Wave (ISW) field, whose first surface manifestations are detected several hundred kilometres away from the nearest forcing bathymetry. Composite maps and an energy budget analysis (provided from the Hybrid Coordinate Ocean Model -HYCOM) help to identify two major ISW pathways emanating from the steep slopes of a small promontory (or headland) near 44 • W and 0 • N, which are seen to extend for over 500 km into the open ocean. Further analysis in the SAR reveals propagation speeds above 3 m s −1 , which are amongst the fastest ever recorded. The main characteristics of the ISWs are further discussed based on a statistical analysis, and seasonal variability is found for one of the ISW sources. This seasonal variability is discussed in light of the North Equatorial Counter Current. The remote appearance of the ISW sea surface manifestations is explained by a late disintegration of the internal tide (IT), which is further investigated based on the SAR data and climatological monthly means (for stratification and currents). Acknowledging the possibility of a late disintegration of the IT may help explain the remote-sensing views of other ISWs in the world's oceans.
[1] This paper presents new results showing that the Sofala shelf in the Mozambique Channel (20°S, 36°E) is a previously unknown ''hot spot'' for the generation of internal tides and internal waves. We investigate available Envisat advanced synthetic aperture radar imagery of the region, which is capable of showing the surface signatures of the internal waves. This is complemented by modeling of the ray pathways of internal tidal energy propagation, and of the P. G. Baines (1982) barotropic body force, which drives the generation of internal tides near the shelf break. The hot spot region is localized between 20°and 21°S because of the particular nature of the bathymetry there. Farther north and south, the forcing is reduced and insufficient to generate internal solitary waves in the synthetic aperture radar images. The analysis reveals two distinct types of internal wave trains that are observed traveling oceanward away from the shelf break, and we suggest that these result from direct generation at the shelf break and from ''local'' generation at about 80 km from the shelf break, respectively, because of the surfacing of internal tidal rays at the thermocline. Finally, we have investigated seasonal differences in the wave patterns, which penetrate more extensively into the channel during the southern summer and appear slightly farther to the south during the southern winter. We also conclude that the local generation process is more likely to occur during the winter when the stratification is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.