Galanin is a brain-gut peptide present in the central nervous system of fish, amphibians, birds, and mammals. For comparative studies among vertebrates, the distribution of galanin in the brain of reptiles has been investigated. We studied the localization of galanin-like-immunoreactive perikarya and nerve fibers in the brain of the turtle Mauremys caspica by using an antiserum against porcine galanin. In the telencephalon, few immunoreactive perikarya were seen in the amygdaloid complex. The diencephalon contained the majority of the immunoreactive perikarya present in the lamina terminalis, nucleus periventricularis anterior, lateral preoptic area, nuclei hypothalamicus ventromedialis and posterior, nucleus basalis of the anterior commissure, and nucleus ventralis tuberis. Many immunoreactive cells, especially in the infundibulum, contacted the cerebrospinal fluid by an apical process. In the rhombencephalon, immunopositive perikarya were restricted to a few cells in the nucleus tractus solitari. In the mesencephalon, they were absent. Immunoreactive nerve fibers were present in all regions containing labeled perikarya and in 1) telencephalon: septum, nucleus fasciculi diagonalis Brocae; 2) diencephalon: nucleus paraventricularis, nucleus supraopticus, nucleus suprachiasmaticus, subventricular grey, nucleus of the paraventricular organ, nucleus mamillaris, infundibular decussation, outer layer of the median eminence, posterior commissure and subcommissural organ region, habenula, nuclei dorsomedialis anterior, and dorsolateralis anterior of the thalamus; and 3) mesencephalon and rhombencephalon: stratum griseum periventriculare, stratum fibrosum periventriculare, laminar nucleus of the torus semicircularis, periventricular grey, nucleus interpeduncularis, nucleus ruber, substantia nigra, locus coeruleus, raphe nuclei, nuclei of the reticular formation, nucleus motorius nervi trigemini, cochlear and vestibular area, and nucleus spinalis nerve trigemini. Our results suggest that galanin may have hypophysiotropic and central roles in the turtle Mauremys caspica.
The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.
Galanin is a brain-gut peptide present in the central nervous system of vertebrates and invertebrates. The distribution of galanin-like immunoreactive perikarya and fibers in the brain of the river lamprey Lampetra fluviatilis (Agnatha) has been studied immunocytochemically by using antisera against rat and porcine galanin. Galanin-like immunoreactive perikarya were seen in the telencephalon and mediobasal diencephalon. In the telencephalon, they were present in the nucleus olfactorius anterior, nucleus basalis, and especially, in the nucleus commissurae anterioris. The diencephalon contained most of the immunoreactive neurons. They were located in the nucleus commissurae praeinfundibularis, nucleus ventralis hypothalami, nucleus commissurae postinfundibularis, nucleus ventralis thalami, and nucleus dorsalis thalami pars medius. Most of the galanin-like immunoreactive infundibular neurons showed apical processes contacting the cerebrospinal fluid. Immunoreactive fibers and terminals were widely distributed throughout the neuraxis. In the telencephalon, the richest galaninergic innervation was found in the nucleus olfactorius anterior, lobus subhippocampalis, corpus striatum, and around the nucleus septi and the nucleus praeopticus. In the diencephalon, the highest density of galanin-like immunoreactive fibers was seen in the nucleus commissurae postopticae, nucleus commissurae praeinfundibularis, nucleus ventralis hypothalami, nucleus dorsalis hypothalami, and neurohypophysis. In the mesencephalon and rhombencephalon, the distribution of immunoreactive fibers was heterogeneous, being most pronounced in a region between the nucleus nervi oculomotorii and the nucleus interpeduncularis mesencephali, in the nucleus isthmi, and in the raphe region. A subependymal plexus of immunoreactive fibers was found throughout the ventricular system. The distribution of immunoreactive neurons and fibers was similar to that of teleosts but different to those of other vertebrate groups. The possible hypophysiotropic and neuroregulatory roles of galanin are discussed.
The subcommissural organ of vertebrates secretes glycoproteins into the third ventricle that condense to form Reissner's fiber (RF). Antibodies raised against the bovine RF-glycoproteins reacted with the floor plate (FP) cells of two teleost (Oncorhynchus kisutch, Sparus aurata) and two amphibian (Xenopus laevis, Batrachyla taeniata) species. At the ultrastructural level, the immunoreactivity was confined to secretory granules, mainly concentrated at the apical cell pole. In the rostro-caudal axis, a clear zonation of the FP was distinguished, with the hindbrain FP being the most, or the only (Batrachyla taeniata), immunoreactive region of the FP. In all the species studied, the caudal FP lacked immunoreactivity. Both the chemical nature of the immunoreactive material and the rostro-caudal zonation of the FP appear to be conservative features. Evidence was obtained that the FP secretes into the cerebrospinal fluid a material chemically related to the RF-glycoproteins secreted by the subcommissural organ. Thus, in addition to being the source of contact-mediated and diffusible signals, the FP might also secrete compounds into the cerebrospinal fluid that may act on distant targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.