In this paper we propose a stabilizing data-based model predictive controller for systems subject to constraints in which the prediction model is inferred from experimental data of the plant using a machine learning technique. The inference method is a modification of the kinky inference tailored for model predictive control. In particular, the modified method has a lower computational effort and provides smoother predictions than the original method. The controller formulation considers soft constraints in the outputs, hard constraints in the inputs and guarantees closed-loop robust stability as well as performance by means of the use of different control and prediction horizons and a weighted terminal cost. Under the assumption that the model of the system is Hölder continuous, we prove that the closed-loop system is input-to-state stable with respect to the estimation errors. The results are demonstrated in a case study of a continuously stirred-tank reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.