Although high affinity binding between streptavidin and biotin is widely exploited, the accompanying low rate of dissociation prevents its use in many applications where rapid ligand release is also required. To combine extremely tight and reversible binding, we have introduced disulfide bonds into opposite sides of a flexible loop critical for biotin binding, creating streptavidin muteins (M88 and M112) with novel disulfide-switchable binding properties. Crystal structures reveal how each disulfide exerts opposing effects on structure and function. Whereas the disulfide in M112 disrupts the closed conformation to increase
k
off
, the disulfide in M88 stabilizes the closed conformation, decreasing
k
off
260-fold relative to streptavidin. The simple and efficient reduction of this disulfide increases
k
off
19,000-fold, thus creating a reversible redox-dependent switch with 70-fold faster dissociation kinetics than streptavidin. The facile control of disulfide formation in M88 will enable the development of many new applications requiring high affinity and reversible binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.