We propose the use of binary slanted surface-relief gratings with parallel-groove walls as input and output couplers in a planar optical interconnect. Parametric optimization of cascaded output couplers is employed to design an interconnect consisting of N output couplers producing a uniform intensity distribution with a high efficiency that may be realized in one lithographic etching step. The sensitivity of a N = 4 interconnect to various fabrication errors is analyzed. We demonstrate the operation of a slanted surface-relief grating manufactured with electron-beam lithography and reactive-ion etching for an operating wavelength of lambda = 0.633 mum.
Separable binary-phase array illuminators for fan-out up to 1024 x 1024 and ~65% two-dimensional efficiency are designed by simulated annealing with constraints for maximizing the minimum feature size. A new nonseparable trapezoidal coding technique is introduced and applied to design high-efficiency (~75%-80%) array generators for fan-out up to 16 x 16. A rigorous electromagnetic diffraction theory is used to evaluate the range of validity of the scalar designs (both grating period and input angle are considered), to analyze fabrication errors (slanted groove walls and undercutting), and to design binary resonance-domain one-dimensional array generators with 90%-100% efficiency. Trapezoidal gratings for low fan-out (8 x 8), separable gratings for high fan-out (up to 128 x 128), and a 1 x 5 resonance domain (100% efficient) reflection grating are demonstrated experimentally.
We present the design, fabrication, and characterization of a subwavelength-pulse-width spatially modulated diffractive array illuminator for an operating wavelength of 0.633 microm. Electromagnetic and scalar diffraction theories are used to reduce manufacturing difficulties while yielding high diffraction efficiency coupled with low reconstruction error. We employ direct electron beam writing and reactive ion etching to realize a transmission-type three-beam array illuminator in photoresist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.