-The increasing international movement of horses combined with the relaxation of veterinary regulations has resulted in an increased incidence of equine infectious diseases. Vaccination, along with management measures, has become the primary method for the effective control of these diseases. Traditionally modified live and inactivated vaccines have been used and these vaccines have proven to be very successful in preventing disease. However, there are a number of equine infectious diseases for which conventional technology has shown its limitations. The advent of recombinant technology has stimulated the development of second generation vaccines, including gene deleted mutants, live vectored vaccines and DNA vaccines. These vaccines have in common that protective antigens are endogenously processed and presented along the molecules of the MHC I and MHC II complex, resulting in the stimulation of both humoral and cell-mediated immune responses similar to natural infection. The present paper provides a review of the vaccines being employed today against the most important equine viral diseases followed by a summary of new developments that are expected to bring improved vaccines to the market in the foreseeable future.
We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC ® ) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n = 8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (<10-80) of virus-specific neutralizing antibodies and were completely resistant to challenge infection with a virulent strain of AHSV-4. In contrast, a horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to liveattenuated AHSV vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.