Lolium rigidum is one the worst herbicide resistant (HR) weeds worldwide due to its proneness to evolve multiple and cross resistance to several sites of action (SoA). In winter cereals crops in Spain, resistance to acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has become widespread, with farmers having to rely on pre-emergence herbicides over the last two decades to maintain weed control. Recently, lack of control with very long-chain fatty acid synthesis (VLCFAS)-inhibiting herbicides has been reported in HR populations that are difficult to manage by chemical means. In this study, three Spanish populations of L. rigidum from winter cereals were confirmed as being resistant to ALS- and ACCase-inhibiting herbicides, with broad-ranging resistance toward the different chemistries tested. In addition, reduced sensitivity to photosystem II-, VLCFAS-, and phytoene desaturase-inhibiting herbicides were confirmed across the three populations. Resistance to ACCase-inhibiting herbicides was associated with point mutations in positions Trp-2027 and Asp-2078 of the enzyme conferring target site resistance (TSR), while none were detected in the ALS enzyme. Additionally, HR populations contained enhanced amounts of an ortholog of the glutathione transferase phi (F) class 1 (GSTF1) protein, a functional biomarker of non-target-site resistance (NTSR), as confirmed by enzyme-linked immunosorbent assays. Further evidence of NTSR was obtained in dose-response experiments with prosulfocarb applied post-emergence, following pre-treatment with the cytochrome P450 monooxygenase inhibitor malathion, which partially reversed resistance. This study confirms the evolution of multiple and cross resistance to ALS- and ACCase inhibiting herbicides in L. rigidum from Spain by mechanisms consistent with the presence of both TSR and NTSR. Moreover, the results suggest that NTSR, probably by means of enhanced metabolism involving more than one detoxifying enzyme family, confers cross resistance to other SoA. The study further demonstrates the urgent need to monitor and prevent the further evolution of herbicide resistance in L. rigidum in Mediterranean areas.
Sorghum halepense (L.) Pers is a common and noxious worldwide weed of increasing distribution in many European countries. In the present review, information on the biology, ecology, agricultural, economic and environmental impact of johnsongrass is given, and the current status of this weed in Europe is discussed. Furthermore, special attention is given to the important role of field trials using glyphosate to control weeds in arable and perennial crops in many European countries. Some of the factors which affect control efficacy and should be taken into account are also discussed. Finally, several non-chemical alternative methods (cultural, mechanical, thermal, biological, etc.) for johnsongrass management are also presented. The adoption of integrated weed management (IWM) techniques such as glyphosate use, crop rotation, and deep tillage is strongly recommended to control plant species that originate from both seed and rhizomes.
The evolution of herbicide resistance in weeds has emerged as one of the most serious threats to sustainable food production systems, which necessitates the evaluation of herbicides to determine their efficacy. The first herbicide resistance case in the Iberian Peninsula was reported about 50 years ago, wherein Panicum dichotomiflorum was found to be resistant (R) to atrazine in Spanish maize fields. Since then, herbicide resistance has evolved in 33 weed species, representing a total of 77 single-herbicide-resistance cases in this geographic area: 66 in Spain and 11 in Portugal. Changes in agricultural practices, namely the adoption of non-tillage systems and the increased use of herbicides, led to the selection of weed biotypes resistant to a wide range of herbicides. Nowadays the most important crops in Spain and Portugal (maize, winter cereals, rice, citrus, fruits, and olive orchards) are affected, with biotypes resistant to several mechanisms of action (MoAs), namely: ALS inhibitors (20 species), ACCase inhibitors (8 species), PS II inhibitors (18 species), and synthetic auxin herbicides (3 species). More recently, the fast increase in cases of resistance to the EPSPS-inhibiting herbicide glyphosate has been remarkable, with 11 species already having evolved resistance in the last 10 years in the Iberian Peninsula. The diversity of resistance mechanisms, both target-site and non-target-site, are responsible for the resistance to different MoAs, involving point mutations in the target site and enhanced rates of herbicide detoxification, respectively. More serious are the 13 cases reported with multiple-herbicide resistance, with three cases of resistance to three–four MoAs, and one case of resistance to five MoAs. Future research perspectives should further study the relationship between management strategies and the occurrence of TSR and NTSR resistance, to improve their design, develop monitoring and diagnostic tools for herbicide resistance, and deepen the study of NTSR resistance.
Una de las principales preocupaciones asociadas a la aparición de una nueva mala hierba invasora es la Palabras clave: Mala hierba emergente, dispersión de plantas, especie invasora, cosechadora, molturación, purines. Aspects of the dispersion and viability of the teosinte seeds (Zea mays ssp.
Herbicide-resistant weeds currently challenge sustainable food production in almost all cropping systems in Europe. Herbicide resistance is increasing, and some European countries are among the most affected globally, such as Spain and France. This situation is worsening not only due to herbicide use restrictions but also due to climate change, rendering Mediterranean countries such as Spain particularly susceptible. Therefore, focus should be aimed at preventive measures, which include those not only based on integrated weed management strategies but also based on a very good knowledge of the biology and ecology of each weed species. The main objective of this review is to provide an overview of potential future herbicide-resistant cases that can evolve in the near future in Europe. We use Spain as the case study, as it is the most affected country in Europe and because it is at risk due to global warming. For different resistant cases detailed on a crop basis, adequate prevention and management measures will be provided in order to avoid resistance evolution relative to the sites of action that are most likely to generate resistant biotypes due to expected high selection pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.