Airborne volcanic ash is one of the most common, far-travelled, direct hazards associated with explosive volcanic eruptions worldwide. Management of volcanic ash cloud hazards often requires coordinated efforts of meteorological, volcanological, and aviation authorities from multiple countries. These international collaborations during eruptions pose particular challenges due to variable crisis response protocols, uneven agency responsibilities and technical capacities, language differences, and the expense of travel to establish and maintain relationships over the long term. This report introduces some of the recent efforts in enhancing international cooperation and collaboration in the Northern Pacific region.
We describe NASA’s Applied Sciences Disasters Program, which is a collaborative project between the Direct Readout Laboratory (DRL), ozone processing team, Jet Propulsion Laboratory, Geographic Information Network of Alaska (GINA), and Finnish Meteorological Institute (FMI), to expedite the processing and delivery of direct readout (DR) volcanic ash and sulfur dioxide (SO2) satellite data. We developed low-latency quantitative retrievals of SO2 column density from the solar backscattered ultraviolet (UV) measurements using the Ozone Mapping and Profiler Suite (OMPS) spectrometers as well as the thermal infrared (TIR) SO2 and ash indices using Visible Infrared Imaging Radiometer Suite (VIIRS) instruments, all flying aboard US polar-orbiting meteorological satellites. The VIIRS TIR indices were developed to address the critical need for nighttime coverage over northern polar regions. Our UV and TIR SO2 and ash software packages were designed for the DRL’s International Planetary Observation Processing Package (IPOPP); IPOPP runs operationally at GINA and FMI stations in Fairbanks, Alaska, and Sodankylä, Finland. The data are produced within 30 min of satellite overpasses and are distributed to the Alaska Volcano Observatory and Anchorage Volcanic Ash Advisory Center. FMI receives DR data from GINA and posts composite Arctic maps for ozone, volcanic SO2, and UV aerosol index (UVAI, proxy for ash or smoke) on its public website and provides DR data to EUMETCast users. The IPOPP-based software packages are available through DRL to a broad DR user community worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.