The Ca-Looping (CaL) process, based on the multicyclic carbonation/calcination of CaO at high temperatures, is a viable technology to achieve high CO2 capture efficiencies in both precombustion and postcombustion applications. In this paper we show an experimental study on the multicyclic CO2 capture of a natural limestone in a fixed bed at CaL conditions as affected by the application of a high-intensity acoustic field. Our results indicate that sound promotes the efficiency of CO2 sorption in the fast carbonation phase by enhancing the gas-solids mass transfer. The fundamentals of the physical mechanism responsible for this effect (acoustic streaming) as well as the technical feasibility of the proposed technique allows envisaging that sonoprocessing will be beneficial to enhance multicyclic CO2 capture in large-scale applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.