Bulk single crystals of unintentionally doped ZnO having charge carrier concentration, N D − N A values of ϳ10 17 cm −3 were implanted with N + ions at dosages of 10 15 and 10 16 cm −2 at 95 keV to a depth of 150 nm. The resulting p − n structure having acceptor concentrations ranging from 10 17 to 10 18 cm −3 was compared with nitrogen doped homoepitaxial films with ϳ8 ϫ 10 17 cm −3 acceptors. Photoluminescence spectra acquired at 8 K showed an increase in the peak for the neutral donor-bound to acceptor-bound transition at 3.210 eV with increasing annealing temperature, thermal activation of a unique donor to acceptor transition due to nitrogen at 3.067 and 3.057 eV for implanted and epitaxial films, respectively; and an increase in the intensity of the defect-related green band at selected temperatures. Electroluminescence measurements at 300 K revealed an ultraviolet band, direct band-to-band recombination at 3.34 eV, donor-acceptor pair recombinations at 3.19 and 3.0 eV, and recombination in the green region centered at 2.49 eV. Current-voltage characteristics of implanted and homoepitaxial p − n diodes were also determined.
ZnO has distinct advantages over competing technologies such as GaN. Two advantages are the inherent improvement in ultraviolet (UV) brightness, necessary for the biological sensor application where the signal-to-noise ratio (SNR) is enhanced by a bright UV source, and the second is the availability of ZnO lattice-matched substrates, which will result in lower defect densities than GaN, higher manufacturing yield, and then lower cost. The ZnO material system's advantage in exciton binding energy of 60 MeV, a three-time improvement over GaN, will result in UV emitters with superior performance. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.