This paper presents the results of an experimental campaign where both the room temperature and the fire resistance of six double-tube concrete filled steel tubular slender columns with different combinations of concrete strength are studied. Firstly, the ultimate axial load of the specimens at room temperature was experimentally obtained and afterwards the fire resistance of such columns subjected to a 20% of their load bearing capacity was measured. Given the reduced number of experimental results found in the literature on slender concrete filled tubular columns with double steel tubular cross-sections, the main objective of this paper is to compare the behaviour of such innovative cross-sections under ambient and high temperatures. The influence of filling the inner ring with concrete on the fire performance of these columns is studied in this paper, as well as the variation of thicknesses of the outer and inner steel tubes. Despite the fact that the tested columns are not covered by the scope of Eurocode 4, the current simple calculation models were applied in this paper in order to assess the validity of the standard to this typology of columns, unsafe results being found.
This paper presents the results of an experimental program where the load-bearing capacity at room temperature of 14 slender circular concrete-filled dual steel tubular (CFDST) columns under axial load was analysed. In this study, two specimens were prepared as ordinary concrete-filled steel tubular (CFST) columns to be used as references to evaluate the mechanical contribution of the inner steel tube and its infill in the CFDST columns. In addition, the effect of two types of concrete: normal strength concrete (NSC) and ultra-high strength concrete (UHSC) was assessed. Besides, in order to study the influence of the steel share between the inner and outer tube, different cross-sectional configurations were considered. Since the number of experimental results available in the literature on slender CFDST columns is scarce, this work provides novel results to this research field. The different influence of the steel distribution in the response of the specimens of each series was observed, with no influence in the case of columns with ultra-high strength concrete in the outer ring. Finally, the current provisions of Eurocode 4 for the design of composite columns were assessed by means of the results of these tests, being necessary more test data to extract solid conclusions about their accuracy and reliability.
This paper proposes an efficient numerical model for the simulation of the behavior of slender circular concrete-filled tubular columns subjected to eccentric axial load with single curvature, for the cases of both normal and high strength concrete. The paper focuses on the study of the influence that the variables affecting beam-column behavior (length and relative slenderness) and the variables affecting section behavior (diameter/thickness ratio, mechanical capacity of steel) have on the overall buckling of this type of column. An extended parametric study is carried out to propose design recommendations, primarily to establish the importance of the use of high strength concrete compared with that of normal strength concrete. The results show that for slender elements the optimum design is reached when the mechanical capacity of the steel is slightly lower than that of the concrete contribution.
This paper presents the results of an experimental program carried out on slender elliptical hollow section columns filled with concrete. Given the reduced number of experimental results found in the literature on concrete filled tubular columns with elliptical cross-section, the main objective of this paper is to compare the behaviour of such innovative cross-sections under ambient and high temperatures. The test parameters covered in this experimental program were the load eccentricity (0, 20 and 50 mm) and the type of infill (plain concrete or bar-reinforced concrete). Six room temperature tests were performed, while other six tests were carried out at elevated temperatures, under both concentric and eccentric axial load. Using the results of these tests, the current provisions of Eurocode 4 for room temperature and fire design were assessed, and a specific design proposal developed by the authors was evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.