In this paper, the functional equivalence between the action of a multilayered feed-forward artificial neural network (NN) and the performance of a system based on zero-order TSK fuzzy rules is proven. The resulting zero-order TSK fuzzy systems have the two following features: A) the product t-norm is used to add IF-part fuzzy propositions of the obtained rules and B) their inputs are the same as the initial NN ones. This fact makes us gain an understanding of the ANN-embedded knowledge. Besides, it allows us to simplify the architecture of a network through the reduction of fuzzy propositions in its equivalent zero-order TSK system. These advantages are the result of applying fuzzy system area properties on the NN area. They are illustrated with several examples.Index Terms-Neural networks (NNs), TSK fuzzy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.