Central plasma sheet (CPS) ion conies are oxygen dominated with peak energies ranging from tens to hundreds of eV centered around pitch‐angles between 115 and 130 degrees. Because of the lack of correlation between the CPS conics and the observed currents and/or electron beam‐like structures, it is not likely that all of these conies are generated by interactions with electrostatic ion cyclotron waves or lower hybrid waves. Instead, we suggest that the observed intense broad band electric field fluctuations in the frequency range between zero and a hundred Hz can be responsible for the transverse energization of the ions through cyclotron resonance heating with the left‐hand polarized electromagnetic waves. This process is much more efficient for heating the oxygen ions than hydrogen ions, thus providing a plausible explanation of the oxygen dominance in CPS conies. Simple algebraic expressions are given from which estimates of conic energy and pitch angle can be easily calculated. This suggested mechanism can also provide some preheating of the oxygen ions in the boundary plasma sheet (BPS) where discrete aurorae form.
[1] A three-dimensional model has been developed for the plasma plumes caused by interchange instabilities in the low-latitude ionosphere to describe the structure and extent of the radio scintillation generated by turbulence in and around the plumes (down to the scale sizes resolvable by the computer model). With the inclusion of the processes that determine the transport of plasma parallel to the geomagnetic field lines as well as transverse to them, the model can predict the extent in latitude of the plumes and their scintillation. To better reflect the day-to-day variability of the occurrence of the plumes, the model is closely coupled to a time-dependent model of the ambient ionosphere to describe the changing conditions under which the plasma instabilities that cause the turbulence must act. Diagnostics presented here will illustrate the density structures found in the models of the plumes, including maps of airglow emissions which show the effect of the density depletions within the plumes. A companion paper presents a phase-screen calculation of the amplitude scintillation caused by the plumes.
An analysis of the occurrence of equatorial plasma bubbles (EPBs) around the world during the 2015 St. Patrick's Day geomagnetic storm is presented. A network of 12 Global Positioning System receivers spanning from South America to Southeast Asia was used, in addition to colocated VHF receivers at three stations and four nearby ionosondes. The suppression of postsunset EPBs was observed across most longitudes over 2 days. The EPB observations were compared to calculations of the linear Rayleigh‐Taylor growth rate using coupled thermosphere‐ionosphere modeling, which successfully modeled the transition of favorable EPB growth from postsunset to postmidnight hours during the storm. The mechanisms behind the growth of postmidnight EPBs during this storm were investigated. While the latter stages of postmidnight EPB growth were found to be dominated by disturbance dynamo effects, the initial stages of postmidnight EPB growth close to local midnight were found to be controlled by the higher altitudes of the plasma (i.e., the gravity term). Modeling and observations revealed that during the storm the ionospheric plasma was redistributed to higher altitudes in the low‐latitude region, which made the plasma more susceptible to Rayleigh‐Taylor growth prior to the dominance of the disturbance dynamo in the eventual generation of postmidnight EPBs.
[1] While the mechanism for producing plasma irregularities in the dusk sector is believed to be fairly well understood, the cause of the formation of irregularities and bubbles during the postmidnight sector is still unknown, especially for magnetically quiet periods. This paper presents a case study of the strong postmidnight bubbles that often occur during magnetically quiet periods primarily in June solstice, along with a 4 year (2009)(2010)(2011)(2012) statistical study that shows strong occurrence peak during June solstice predominantly in the African sector. We also confirm, for the first time, the presence of Rayleigh-Taylor (RT) instability during postmidnight hours by using the physics-based model for plasma densities and RT growth rates. Finally, we consider several possible sources of the eastward electric fields that permit the RT instability to develop and form bubbles in the postmidnight local time sector. Citation:
Presented is an analysis of the occurrence of postsunset Equatorial Plasma Bubbles (EPBs) detected using a Global Positioning System (GPS) receiver at Vanimo. The three year data set shows that the EPB occurrence maximizes (minimizes) during the equinoxes (solstices), in good agreement with previous findings. The Vanimo ionosonde station is used with the GPS receiver in an analysis of the day-to-day EPB occurrence variability during the 2000 equinox period. A superposed epoch analysis (SEA) reveals that the altitude, and the change in altitude, of the F layer height is ∼1 standard deviation (1 ) larger on the days for which EPBs were detected, compared to non-EPB days. These results are then compared to results from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), which show strong similarities with the observations. The TIEGCM is used to calculate the flux-tube integrated Rayleigh-Taylor (R-T) instability linear growth rate. A SEA reveals that the modeled R-T growth rate is 1 higher on average for EPB days compared to non-EPB days, and that the upward plasma drift is the most dominant contributor. It is further demonstrated that the TIEGCM's success in describing the observed daily EPB variability during the scintillation season resides in the variations caused by geomagnetic activity (as parameterized by Kp) rather than solar EUV flux (as parameterized by F 10.7 ). Geomagnetic activity varies the modeled high-latitude plasma convection and the associated Joule heating that affects the low-latitude F region dynamo, and consequently the equatorial upward plasma drift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.