Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiationhydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which to compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.
This paper explores the electron-electron two-stream stability limit of a virtual cathode in spherical geometry. Previous work using a constant density slab model [R. A. Nebel and J. M. Finn, Phys. Plasmas 8, 1505 (2001)] suggested that the electron-electron two-stream would become unstable when the well depth of the virtual cathode was 14% of the applied voltage. However, experimental tests on INS-e have achieved virtual cathode fractional well depths ∼60% with no sign of instability. Here, studies with a spherical gridless particle code indicate that fractional well depths greater than 90% can be achieved without two-stream instabilities. Two factors have a major impact on the plasma stability: whether the particles are reflected and the presence of angular momentum. If the particles are reflected then they are guaranteed to be in resonance with the electron plasma frequency at some radius. This can lead to the two stream instabilities if the angular momentum is small. If the angular momentum is large enough it stabilizes the instability much the same way as finite temperature stabilizes the two-stream instability in a slab.
Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX–L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX–L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2–5×1022 m−3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.
We describe the experiment and technology leading to a target plasma for the magnetized target fusion research effort, an approach to fusion wherein a plasma with embedded magnetic fields is formed and subsequently adiabatically compressed to fusion conditions. The target plasmas under consideration, field-reversed configurations ͑FRCs͒, have the required closed-field-line topology and are translatable and compressible. Our goal is to form high-density (10 17 cm Ϫ3 ) FRCs on the field-reversed experiment-liner ͑FRX-L͒ device, inside a 36 cm long, 6.2 cm radius theta coil, with 5 T peak magnetic field and an azimuthal electric field as high as 1 kV/cm. FRCs have been formed with an equilibrium density n e Ϸ(1 to 2)ϫ10 16 cm Ϫ3 , T e ϩT i Ϸ250 eV, and excluded flux Ϸ2 to 3 mWb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.