The stability of synthetic REE aluminate garnets irradiated by accelerated Kr 2+ ions and affected by alpha decay of 244 Cm (T 1/2 = 18.1 yr) has been studied. The dose of irradiation sufficient for the complete disordering of the aluminate garnet structure is 0.40-0.55 displacements per atom. This value increases with rising temperature due to the increasing intensity of recovery from radiation damage to the lattice by heating. The critical temperature above which the structure of REE aluminate is not damaged by radiation is 550°C. The amorphization dose for aluminates with garnet structure is two to three times higher than of that previ ously studied ferrites; the critical temperature of both is similar. In resistance to radiation, aluminate garnets do not yield to zirconolite and exceed titanate pyrochlore. Heating to 250°C does not lead to substantial recovery from radiation defects in the garnet structure. The radiation impact on matrices of real actinide (An) wastes is lower than that related to ion irradiation and 244 Cm doping, and this facilitates a higher radiation resistance of garnets containing HLW.
We use two different techniques to derive the two parameters describing conduction electron scattering and spin-flipping at sputtered Al/Cu interfaces in the current-perpendicular-to-plane (CPP) geometry. These parameters are: 2ARAl/Cu, twice the interface specific resistance, where A is the area through which the CPP current flows; and δAl/Cu, which gives the probability P of spin-flipping from P = 1 – exp(−δ). A technique involving simple multilayers, and sample temperature not exceeding room temperature, gives 2ARAl/Cu = 2.3 ± 0.2 fΩm2. A technique involving exchange-biased spin-valves (EBSVs), where the sample is annealed briefly to 453 K, gives 2ARAl/Cu = 2.0 ± 0.15 fΩm2. Averaging the two values, but increasing the uncertainty for reasons explained, gives the best estimate of 2ARAl/Cu = 2.15 ± 0.4 fΩm2. This average is comparable to, but smaller than, the published value of 2ARAl/Cu = 3.6 ± 1 fΩm2 derived from thermal conductance measurements, and larger than our calculated values for interface thicknesses up to 6 monolayers (ML). However, it is similar to our calculated values for an interface thickness of 8 ML. Combining extrapolation of higher temperature bulk diffusion data for Al in Cu and vice-versa, with x-ray and transmission electron microscope (TEM) studies of similarly sputtered multilayers, indicates that such interface thicknesses are possible, especially for annealed multilayers. CPP-magnetoresistance (MR) measurements of the EBSV samples give only very small spin-flipping at the Al/Cu interface—δAl/Cu = 0.05−0.05+0.02. Such a small value is consistent with expected small spin-orbit interactions in both Al and Cu. Supplementary studies of CPP-MR of Permalloy (Py)-based EBSVs containing [Cu/Al/Cu] trilayers, show unusual behavior when the central Al layer is at least 10 nm thick, giving a CPP-MR like that for Py/Al, independent of Cu layer thicknesses from 0 to 10 nm. MR, x-ray, and TEM results give some clues as to the origins of this behavior, but a completely satisfactory explanation is not yet available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.