A water-in-oil microemulsion method has been applied for the preparation of silica-coated iron oxide nanoparticles. Three different nonionic surfactants (Triton X-100, Igepal CO-520, and Brij-97) have been used for the preparation of microemulsions, and their effects on the particle size, crystallinity, and the magnetic properties have been studied. The iron oxide nanoparticles are formed by the coprecipitation reaction of ferrous and ferric salts with inorganic bases. A strong base, NaOH, and a comparatively mild base, NH4OH, have been used in each surfactant to observe whether the basicity has some influence on the crystallization process during particle formation. Transmission electron microscopy, X-ray electron diffraction, and superconducting quantum interference device magnetometry have been employed to study both uncoated and silica-coated iron oxide nanoparticles. All these particles show magnetic behavior close to that of superparamagnetic materials. By use of this method, magnetic nanoparticles as small as 1-2 nm and of very uniform size (percentage standard deviation is less than 10%) have been synthesized. A uniform silica coating as thin as 1 nm encapsulating the bare nanoparticles is formed by the base-catalyzed hydrolysis and the polymerization reaction of tetraethyl orthosilicate in microemulsion. All experimental results are also compared with those for particles synthesized in pure water.
Recent advances in the theory and experimental realization of ferromagnetic semiconductors give hope that a new generation of microelectronic devices based on the spin degree of freedom of the electron can be developed. This review focuses primarily on promising candidate materials ͑such as GaN, GaP and ZnO͒ in which there is already a technology base and a fairly good understanding of the basic electrical and optical properties. The introduction of Mn into these and other materials under the right conditions is found to produce ferromagnetism near or above room temperature.There are a number of other potential dopant ions that could be employed ͑such as Fe, Ni, Co, Cr͒ as suggested by theory ͓see, for example, Sato and Katayama-Yoshida, Jpn. J. Appl. Phys., Part 2 39, L555 ͑2000͔͒. Growth of these ferromagnetic materials by thin film techniques, such as molecular beam epitaxy or pulsed laser deposition, provides excellent control of the dopant concentration and the ability to grow single-phase layers. The mechanism for the observed magnetic behavior is complex and appears to depend on a number of factors, including Mn-Mn spacing, and carrier density and type. For example, in a simple Ruderman-Kittel-Kasuya-Yosida carrier-mediated exchange mechanism, the free-carrier/Mn ion interaction can be either ferromagnetic or antiferromagnetic depending on the separation of the Mn ions. Potential applications for ferromagnetic semiconductors and oxides include electrically controlled magnetic sensors and actuators, high-density ultralow-power memory and logic, spin-polarized light emitters for optical encoding, advanced optical switches and modulators and devices with integrated magnetic, electronic and optical functionality.
We have investigated the magnetic properties of Mn-implanted n-type ZnO single crystals that are codoped with Sn. Theory predicts that room-temperature carrier-mediated ferromagnetism should be possible in manganese-doped p-type ZnO, although Mn-doped n-type ZnO should not be ferromagnetic. While previous efforts report only low-temperature ferromagnetism in Mn-doped ZnO that is n type via shallow donors, we find evidence for ferromagnetism with a Curie temperature of ∼250 K in ZnO that is codoped with Mn and Sn. As a 4+ valence cation, Sn should behave as a doubly ionized donor, thus introducing states deep in the gap. Hysteresis is clearly observed in magnetization versus field curves. Differences in zero-field-cooled and field-cooled magnetization persists up to ∼250 K for Sn-doped ZnO crystals implanted with 3 at. % Mn. Increasing the Mn concentration to 5 at. % significantly reduces the magnetic hysteresis. This latter observation is inconsistent with the origin for ferromagnetism being due to segregated secondary phases, and strongly suggests that a near-room-temperature dilute magnetic semiconducting oxide has been realized. Based on these results, ZnO doped with Mn and Sn may prove promising as a ferromagnetic semiconductor for spintronics.
High doses (10 15-5ϫ10 16 cm Ϫ2) of Mn ϩ ions were implanted into p-GaN at ϳ350°C and annealed at 700-1000°C. At the high end of this dose range, platelet structures of Ga x Mn 1Ϫx N were formed. The presence of these regions correlated with ferromagnetic behavior in the samples up to ϳ250 K. At low doses, the implanted led to a buried band of defects at the end of the ion range.
Growth by molecular-beam epitaxy of the dilute magnetic alloy GaMnN is reported. The GaMnN contains 7.0% Mn as determined by Auger electron spectroscopy, and is single phase as determined by x-ray diffraction and reflection high-energy electron diffraction. Both magnetic and magnetotransport data are reported. The results show the anomalous Hall effect, negative magnetoresistance, and magnetic hysteresis at 10 K, indicating that Mn is incorporating into the GaN and forming the ferromagnetic semiconductor GaMnN. At 25 K the anomalous Hall term vanishes, indicating a Curie temperature between 10 and 25 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.