This paper deals with the deformation characteristics of wood-framed residential, small commercial and hotel buildings with sheathing. Recent building structures are based on large panel or modular technology, where elements in the form of diaphragms or modules are constructed in an industrial plant and then transported to the site for assembly. The document presents diagrams of building assembly and technologies for realization. The significant influence of excessive vertical deformations in multistorey wood-framed buildings on their performance and serviceability is underlined. These deformations are caused by different factors which are identified and analytically described. The paper outlines the analytically complex model for the evaluation and control of deformations in the design, construction and exploitation of multistorey wood-framed buildings. An example of the application of the proposed analytical model at the design stage concludes the paper.
This paper focuses on development of the high energy saving timber building and ecological technology protecting environment in civil engineering. Wood framed with sheathing, large panel structures became more popular building constructions in Poland last decade. Experimental tests and numerical analysis of panels and complete wood framed building have been taken into account. Typical two-story residential building was selected for test. Test of three dimensional (3D) whole building was conducted on the base of experimental investigations results of large panel similar to those used in building structure. Also adequate tests of materials and connections were accompanying of the whole structure investigations. Obtained results were adopted in numerical models elaborated for wall and floor panels and in 3D model of whole building. Load -displacements characteristics were acquired from tests and numerical models. The displacements computed from 3D numerical model were 10–20% higher than from experiment. Experimentally ob-tained lower displacements than those from analytical analysis are resulted from higher stiffness of wall system due to diaphragms interconnections, their common interaction and three-dimensional character of building structure. Presented research analyzed method of computation of internal forces in building as well in the range of engineering methods in the form of rigid beam scheme up to the advanced methods using 3D spatial model adopting FEM.
1This paper presents new procedure modeling based on finite element method analysis of wood-framed timber structures. The fasteners linking boards of sheathing with the timber frame both modeled applying shell finite element, with individual material parameters, remain the main objective of this manuscript. Material parameters are obtained from experimental tests and numerical identification. The main objective of the paper is the elaboration of the numerical model with high precision of mapping, and, at the same time, diminishing the number of the unknown simplifying the process of the modeling of timber structures. The new presented method leads to a simplification of analysis of multistory wood-framed multifamily building structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.