A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
SUMMARY Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (N>4000) independently predicted incident (3 yr) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced submaximal stimulus-dependent platelet activation from multiple agonists through augmented Ca2+ release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation, collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential, and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.
Macrophage-specific Abca1 knock-out (Abca1؊M/؊M ) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1 ؊M/؊M and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1 ؊M/؊M macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1 ABCA1 (ATP-binding cassette transporter A1) is a plasma membrane protein that is widely expressed throughout the body (1, 2) and functions as a primary gatekeeper for eliminating excess free cholesterol (FC) 2 from tissues by effluxing cellular FC and phospholipid (PL) to lipid-free apoA-I, resulting in the formation of nascent high density lipoprotein (HDL) particles (3, 4). The nascent discoid-shaped HDL then undergoes a maturation process that involves additional lipid acquisition and conversion of FC to cholesteryl ester (CE) by lecithin:cholesterol acyltransferase to become mature spherical plasma HDL. Mutations that inactivate the human ABCA1 gene result in Tangier disease, which is characterized by extremely low HDL cholesterol concentrations, mildly elevated plasma trigelyceride levels, and accumulation of cholesterol in macrophages (5-10). Targeted deletion of Abca1 in mice and a natural mutation of Abca1 in the Wisconsin hypoalpha mutant chicken recapitulate the Tangier plasma lipid phenotype, supporting the essential role of ABCA1 in HDL formation (11-15). Although ABCA1 is expressed in many cells in the body, recent studies in hepatocyte-and intestinal epithelium-specific Abca1 knock-out mice suggest that the liver contributes 70 -80% of the plasma HDL pool, whereas the intestine contributes 20 -30% (16, 17). Although mobilization of excess FC from macrophages is dependent on ABCA1 and results in the formation of nascent HDL particles, transplantation of bone marrow from Abca1 knock-out (KO) mice into wild-type (WT) mice or transplantation of WT marrow into Abca1 KO recipients has little effect on plasma HDL concentrations, suggesting that macrophage ABCA1 expression has minimal impact on plasma HDL concentrations (18,19).Macrophages are a primary cell type involved in innate immunity. Although macrophage ABCA1 has a minimal impact on plasma lipid levels, there is evidence that its activity modulates the inflammatory response of macrophages to pathogen-associated molecules such as lipopolysaccharide
Trimethylamine-N-oxide (TMAO), a microbiota-dependent metabolite derived from trimethylamine (TMA)-containing nutrients that are abundant in a Western diet, enhances both platelet responsiveness and in vivo thrombosis potential in animal models and predicts incident atherothrombotic event risks in clinical studies. Here, utilizing a mechanism-based inhibitor approach targeting a major microbial TMA-generating enzyme (CutC/D), we developed potent, time-dependent and irreversible inhibitors that do not affect commensal viability. In animal models, a single oral dose of a CutC/D inhibitor significantly reduced plasma TMAO levels for up to 3 days and rescued diet-induced enhanced platelet responsiveness and thrombus formation, without observable toxicity or increased bleeding risk. The inhibitor selectively accumulated within intestinal microbes to millimolar levels, a concentration over a million-fold higher than needed for a therapeutic effect. These studies reveal that mechanism-based inhibition of gut microbial TMA/TMAO production reduces thrombosis potential, a critical adverse complication in heart disease. They also offer a generalizable approach for the selective non-lethal targeting of gut microbial enzymes linked to host disease, while limiting systemic exposure of the inhibitor in the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.